In the High Court of New Zealand Auckland Registry

CIV2005-404-4495

Under Part I of the Judicature Amendment Act 1972

In the matter of an application for review

between

The New Zealand Recreational Fishing Council Inc, and New Zealand Big Game Fishing Council Inc

Plaintiffs

and

Minister of Fisheries

First Respondent

and

The Chief Executive of the Ministry of Fisheries

Second Respondent

and

Sanford Limited, Sealord Group Limited, and Pelagic & Tuna New Zealand Limited

Third Respondent

Affidavit In Reply of Jonathan Clive Holdsworth

Sworn /9// October 2006

HESKETH HENRY Lawyers

Plaintiff's Solicitors 11th Floor 41 Shortland Street Private Bag 92093 DX CP 24017 AUCKLAND Tel +64 9 375 8700 Fax +64 9 375 8771

Solicitor Senior Counsel Stuart Ryan Alan Galbraith QC

09 375 8778 09 309 1769 stuart.ryan@heskethhenry.co.nz argalbraith@xtra.co.nz

495734_1/sak

I, Jonathan Clive Holdsworth, of Whangarei, fisheries consultant and scientist, swear:

Purpose

- I have the qualifications and experience set out in my affidavit of 26 August 2005. I acknowledge that I have read the code of conduct for expert witnesses in the High Court Rules and agree to comply with it.
- 2. The purpose of this affidavit is to comment on aspects of the evidence of the third respondents particularly in relation to statements as to:
 - · decline in abundance of kahawai stocks; and
 - any requirement for constraint on the recreational catch.
- 3. I also address two matters raised by the Minister in relation to:
 - New information presented to the Minister in 2005; and
 - The Minister's consideration of the Hauraki Gulf in 2005.

The Minister's Affidavit – New Information in 2005

- 4. At paragraph 54, the Minister refers to the Ministry having provided a briefing outlining new information gathered since decisions in 2004.¹ Some of this "new information" includes data on the length, age and catch rates of kahawai from recreational fishers interviewed at boat ramps in east Northland, the Bay of Plenty, and the Hauraki Gulf. These surveys have been conducted annually since 2000². The basic interview format is the same as used in 1991, 1994 and 1996³.
- In relation to the Minister's 2005 decisions the "new" information from the ongoing kahawai boat ramp surveys by NIWA, led by Mr Bruce Hartill, was the 2003–04 results showing fewer kahawai

495734_1/sak

¹ Referenced at pages 636-641 of exhibit VW1 to affidavit of Vaughan Wilkinson

Results from this ongoing research has been previously reported as Hartill et al. (2003) Length and age compositions of recreational landings of kahawai in KAH 1 in 2000-01 and 2001-02. Hartill et al. (2004) Monitoring length and age compositions of recreational landings of kahawai in KAH 1 in 2000-01 and 2001-02 and 2002-03.

³ The older boat ramp survey information, going back to 1991, 1994 and 1996 data has been available in published form for some time and is reported in publications authored by NIWA scientist Dr Elizabeth Bradford, see for example her 1999 report *Comparison of marine recreational harvest rates and fish size distributions*.

encountered during the survey in the Hauraki Gulf, despite far more intensive sampling that season.⁴

- There were also preliminary results available from a separate 6. research project using a different method of estimating recreational harvest than was used in the previous telephone and diary surveys. The result of the new harvest survey using the aerial overflight method is of interest, but direct comparisons to telephone diary survey estimates need to be treated with some caution in my view. This is because the two methods are based of different data collection methods and a completely different set of assumptions. However, as I have stated above, since 1991, all boat ramp surveys have adopted the same interview format. In my opinion, the low number of kahawai caught per fishing trip and the changes in this recreational catch per unit effort (CPUE) in the Hauraki Gulf are significant, as the Minister recognises in 2005. The data come from NIWA observers on boat ramps who inspect and measure the catch using the same interview method from year to year. The results from the boat ramp surveys are not dependent upon a large number of assumptions, scaling and associated uncertainties which affect surveys of total recreational harvest. One limitation however in interpreting this CPUE/ catch rate data from the boat ramp surveys is that there is no comparable information that pre-dates the expansion of the purse seine fleet and high annual commercial landings in the 1980s.
- 7. CPUE is very useful in fisheries management and stock assessment. If collected in a consistent manner trends over time potentially show changes in availability and abundance in a fish stock in an area. Differences in abundance between areas can be compared and in the case of recreational fishers, catch rates can indicate fishing success.
- Low recreational kahawai catch per boat trip in the Hauraki Gulf was also described as "new information" in the advice to the Minister in Figure 3 of the IPP 2005⁵, even though the information

⁴ This information is reported in Hartill *et al.* (2006) Length and age compositions of recreational landings of kahawai in V KAH 1 January to April 2004 (presented as a draft to the Pelagic Fishers Assessment Working Group in April 2005) ⁵ From Sullivan et al (2005) Report of the Fishery Assessment Plenary, Mary 2005: stock assessments and yield estimates.

on low catch rates, especially in the Hauraki Gulf have been available to the Ministry for many years commencing in 1991.

- 9. Catch per boat trip, is quite a crude measure of CPUE. This is because the number of people fishing, the target species and the time spent fishing will vary and may be different across areas or time. It is preferable to split the CPUE by target species and report the average number of fish caught per fisher per hour. Data from the earlier 1996 boat ramp surveys has been summarised in this way for northern areas and compared with 1991, 1994 and 1996 survey data by Dr Elizabeth Bradford.⁶ This includes information concerning the west coast of the North Island, called KAH 9 in the report and now called KAH 8. Recreational catch rates in this area are reasonable, (as I noted at paragraph 23.52 of my earlier affidavit) and recreational fishers there have not expressed dissatisfaction, something noted by the Minister (his paragraph 86).
- 10. Poor recreational catch rates are a key issue driving the dissatisfaction with previous and current kahawai management in many areas. Given that good quality survey information on recreational kahawai CPUE exists, particularly in northern New Zealand from the boat ramp surveys commencing in 1991, it is reasonable in my view to expect that the Ministry would describe recreational catch rates by area in some detail and apply this information when advising the Minister to assess the fishery in individual QMA's. The Minister lists (at his para 107.2) the factors that he could take into account when reviewing the TACs. He makes no express mention of the data collected of recreational CPUE by the boat ramp surveys.
- 11. So that there are available copies of the relevant boat ramp survey reports to which I have referred in this affidavit and my earlier affidavit, I attach as exhibits A, B and C respectively the following reports:
 - a. Bradford (1999) Comparison of marine recreational fishing harvest rates and fish size distributions
 - b. Hartill *et al.* (2003) Length and age compositions of recreational landings of kahawai in KAH 1 in 2000–01 and 2001–02;

(JEJ

4

Bradford (1999) Comparison of marine recreational fishing harvest rates and fish size distributions.

c. Hartill *et al.* (2006) Length and age compositions of recreational landings of kahawai in KAH 1 January to April 2004: and

The Minister's Affidavit – Hauraki Gulf

- 12. In the 2005 FAP the Minister was provided with more detailed information concerning the Hauraki Gulf than the Minister was provided with in 2004. The advice concluded that area constraints within the Hauraki Gulf were unlikely to be effective (see paragraph 59, affidavit of the Minister). At paragraph 243 of the 2005 FAP MFish advised the Minister:
 - 243 As mentioned in the IPP at paragraph 104 k, you are required under s 11(2)(c) of the Act to consider how the proposals for KAH 1 meet the requirements of section 7 and 8 of the Hauraki Gulf Marine Park Act 2000. This Act's objectives are to protect and maintain the natural resources of the Hauraki Gulf as a matter of national importance. MFish considers that, under both options, the management measures for KAH 1 will meet the purpose of the Hauraki Gulf Marine Park Act, however, Option 2 will provide a more certain position in this regard.
- 13. In terms of providing a more certain position, I agree that fish movement of mobile species such as kahawai is likely to mean that biomass levels outside the Marine Park will be a factor relevant to fish abundance within the Marine Park. Whether adopting a uniform national response of a 10% reduction for an area of national significance, which currently has a very poor recreational kahawai fishery is adequate, may be queried.
- 14. I observe that the information presented to the Minister in relation to the Hauraki Gulf in 2005 related to areas within the inner and outer Hauraki Gulf, which is not synonymous with the geographic boundaries of the Hauraki Gulf Marine Park, which extends into the western Bay of Plenty along the eastern side of the Coromandel Peninsula. This latter area is fished by purse seine vessels, and is in relatively close proximity to their home port of Tauranga.

5

6

Decline in Abundance: Starr / Winstanley / Murray / Reid

- 15. Paul Starr states that available evidence on the status of kahawai stocks is equivocal.⁷ He states this is largely because population biomass estimates are hard to obtain and a key component of the total catch is not available. I agree that much of the data for a full stock assessment of kahawai is either lacking or uncertain including a reliable measure of kahawai abundance. Therefore in my opinion it is important to consider other sources of information, such as recreational CPUE from boat ramp surveys and observations from experienced recreational kahawai fishers in assessing the status of kahawai stocks.
- Paul Starr states a number of times that there is "no scientific 16. evidence of a decline in kahawai stocks".⁸ While he is correct that there is no consistent and reliable method presently available to determine the abundance of any of the kahawai stocks, there is available information (see the appendix to my affidavit of 26 August 2005) to show low recreational kahawai catch rates and changes in the size of fish caught and the age structure of the population. This information, which was available and known to the Ministry in 2004, is consistent with the stock being fished down. In my opinion kahawai abundance declined significantly in the late 1980s and early 1990s. I base this on own personal observation, the significant number of complaints I received while I working for the Ministry of Agriculture and Fisheries in their Whangarei district office at that time, and from data collected by researchers prior to the decline as described in my affidavit of 26 August 2005.
- 17. In my opinion the change in population structure is likely to have led to a contraction in the distribution of kahawai, which are now much less available in inshore waters than they used to be. The Hauraki Gulf appears to have undergone a significant change, with NIWA surveys showing almost no adult kahawai occurring in the recreational catch in this area (as described in paragraph 23.22 of my affidavit of 26 August 2005).
- 18. There is evidence that recreational catch rates have not improved since 1991. The kahawai catch per trip in the Hauraki Gulf has

⁷ At para 63.5 of the affidavit of Paul Starr

⁸ See para xxx and elsewhere affidavit of Paul Starr

been very low and declined further in recent years. This information is described in paragraphs 23.13 to 23.32 of my affidavit dated 26 August 2005. Catch rates at the important traditional fishery at the mouth of the Motu River also appear to have declined significantly between 1982 and 1991.⁹

- 19. The fishing down of kahawai stock in KAH 1 is noted in other evidence provided by the third respondents. The affidavits from the purse seine skippers Murray and Reid state that stocks were impacted prior to the introduction of purse seine limits, although it is their impression that current stock levels have improved rapidly in recent years.
- 20. Kevin Lawrence Murray, skipper of the purse seine vessel San *Columbia*, states in his affidavit:

"I consider that the abundance of kahawai has changed twice since I have been fishing. Before the commercial limits were introduced in 1990-1991, there was a decrease in the abundance of kahawai as the stock was fished down – kahawai schools became smaller and harder to find."

21. Peter George Reid, the skipper of the purse seine vessel *Matariki* and *Tawera II* states in his affidavit:

"I have noticed changes in abundance of kahawai over the years. In the late 1980, when the catch of kahawai was unrestricted, there was a noticeable decline in the abundance of large kahawai schools over time."

22. These skippers also state that in their opinion they are encountering more schools now than in the 1990s. In my opinion the information on recreational catch rates and age structure of kahawai in KAH 1 from the boat ramp surveys is consistent with an overall decline in abundance. This is consistent with a change in the distribution of kahawai as the stock has been fished down. A change in the distribution of kahawai at a lower biomass is not inconsistent with observations that kahawai schools still aggregate in areas of prime habitat, such as the western Bay of Plenty where these commercial

⁹ This information is reported in the Ministry's 2004 Plenary Report on kahawai (section 1.b.).

fishers usually operate. Other areas in KAH1 are observed to have fewer kahawai.

- 23. As noted in the affidavits of Jeffery Romeril and Kim Walshe, it was from the 1980's when the kahawai stock was heavily fished by purse-seine vessels that recreational fishers started to express strong concerns that recreational catch rates were declining. Surveys to estimate recreational harvests and catch rates did not start until 1991. A dedicated annual survey of the length and age structure of recreational kahawai catch has only been operating since 2000.
- 24. It is a general characteristic of all plausible fisheries stock assessment models that the biomass of a fish stock declines from its virgin level when subject to substantial fishing. The combined commercial and non-commercial fisheries in KAH 1 have probably caught at least two thousand tonnes per year for that last 30 years. This means that it can be stated with certainty that the stock in this area has declined, probably significantly, from its virgin biomass. At issue is the effect of this decline in kahawai biomass (or abundance) on amateur fishing interests and whether the stock size is above or below B_{MSY} in each QMA.
- 25. There are two potential impacts on recreational fishers resulting from the development of a large unconstrained commercial kahawai fishery in the 1970s and1980s. The first potential impact is that recreational catch rates could be expected to decline as a result of the fishing down of kahawai stocks from their (near) virgin biomass to a much lower biomass. The affidavit by Jeffery Romeril details the many submissions by the New Zealand Big Game Fishing Council expressing concern about the large decline in recreational kahawai catch rates and a reduction in the number of schools of kahawai seen by recreational fishers. These observations of recreational fishers are consistent with the fishing down of kahawai stocks.
- 26. The second potential impact is that as recreational kahawai catch rates and availability declined so did total recreational harvest. The evidence of Ross Winstanley¹⁰ supported by Paul Starr ¹¹ states

¹⁰ Para 73.6 of affidavit of Ross Winstanley

¹¹ Para 61.3 of affidavit of Paul Starr

that the failure to manage one sector of the fishery while restricting the second inevitably leads to reallocation of catch from the first to the second sector. There was no constraint on the purse seine catch prior to 1991. Commercial catches increased rapidly after kahawai was left out of the quota management system in 1986. Purse seine catch limits were introduced in response to public concerns about the state of kahawai stocks. As a result, a major reallocation of kahawai in KAH1 away from recreational fishers to the commercial sector took place in the 1980s when commercial harvests were not controlled.

27. The Ministry of Fisheries' policy of adopting a proportional allocation of the resource to different sectors based on recent catch history using the 'claims based' allocation approach has cemented this reallocation away from the recreational sector.

Need for Constraint on Recreational Catch: Starr / Wilkinson

- 28. Starr and Wilkinson say there is a need to further constrain the noncommercial catch.¹² There is a contradiction in these statements to the effect that it is said that the non-commercial harvest estimates are implausibly high (they say much higher than actual catch) and at the same time, it is said that the Minister should act to ensure that the non-commercial catch is constrained within the noncommercial allowance.
- 29. Apart from the setting of TAC's neither Starr nor Wilkinson accept the need for sustainability measures for kahawai in any QMA. The concern appears to be the potential for reallocation away from the commercial sector if the recreational catch is unconstrained. Leaving aside the cause of the drop in abundance, the need to constrain a sector to its allowance, (such as through reducing recreational bag limits) will be more compelling where there is a clear sustainability rationale, and the sector is likely to exceed the allowances provided. However, I am not aware of any information that would have suggested to the Minister that the non-commercial catch (customary Maori and recreational) was likely to exceed the reduced allowances made for those sectors in 2004 and 2005. The available information on recreational catch rates does not indicate

9

¹² See section F pages 22 and 23 and elsewhere affidavit of Paul Starr, and section F7 pages 50 to 54 and elsewhere affidavit of Vaughan Wilkinson

that there has been an unrestricted or rapid increase in recreational harvests of kahawai in recent years that may threaten the commercial catch.

- 30. There are also a number of other factors that act as practical constraints on the recreational catch. These constraints include:
 - a. The fishing gear/technology employed by recreational fishers is limited in scale. Most recreational fishers use a rod and reel (or less frequently hand lines) with one or two hooks. There are exceptions, for example where recreational fishers use set-lines with multiple hooks. Amateur fishing regulations restrict the amount of fishing gear that recreational fishers are allowed to use. Fishing with hand held lines limits the fishing effort that can be expended by individual recreational fishers.
 - In my experience the amount of recreational fishing effort is constrained by the amount of time people have available and favourable weather conditions. Often the two do not coincide.
 - Non-commercial fishers (as a group) do not modify their fishing effort to ensure that the sector's "allowance" is reached.
 - 31. The Minister's decision in respect of bag limits was to await further information. Any bag limit reductions would have no effect unless they are set very low, and even then, they may be ineffectual.¹³ In my view, and given these constraints on the recreational catch, the Minister's decision not to introduce any further bag limit or other restraints on recreational fishers was open to the Minister, particularly given that there was no evidence that the recreational sector's allowance was exceeded.

¹³ See my affidavit of 26 August 2005, paras 19.8 to 19.16, and the affidavit of Paul Starr, paragraphs 62.1 to 62.4

⁴⁹⁵⁷³⁴_1/sak

SWORN by JONATHAN CLIVE HOLDSWORTH at Auckland This 19th day of October 2006) before me:

Hobroat

A Solicitor of the High Court of New Zealand U r MARIA ENGAR **HENDERSON REEVES CONNELL RISHWORTH** P.O. BOX 11 WHANGAREI PH: (09) 430 4350 -

)

)

)

495734_1/sak

Taihoro Nukurangi 000143

"A"

This is the paperwriting marked "A" mentioned and referred to in the annexed Affidavit of Jonathan Clive Holdsworth sworn at Auckland this / // Leay of October 2006 before me: mreh Gates?

Soliciter of the High Court of New Zealand

NIWA Technical Report 48 ISSN 1174-2631 1999

Abstract

Bradford, E. 1999: Comparison of marine recreational fishing harvest rates and fish size distributions. NIWA Technical Report 48. 54 p.

Boat ramp surveys were carried out in the Ministry of Fisheries North region in 1991, 1994, and 1996. The importance placed on the objectives and the timing of these surveys differed in the three years leading to difficulty in selecting comparable data. A further problem is that the recreational boat fishery in the North region is so dominated by the snapper fishery that the data sets are unbalanced and contain an overabundance of snapper data and very little data for many other species. The objective set by the Ministry of Fisheries required the comparison of harvest rates and size distributions for 20 main species.

The report starts with an overview of the 1996 harvest rate data given to indicate the problems which arise and why subsequent selections of data were made. The 1996 snapper and kahawai harvest rates are given in some detail. Three estimators of harvest rate for individual fishers are used. These estimators measure different quantities and the choice of estimator depends on how it will be used. Where there are sufficient data, comparisons of harvest rate are made using data collected during the day at weekends in March and April to maximise the comparability between surveys.

Snapper harvest rates were generally highest in 1994. Most of the recreational kahawai harvest is taken as a bycatch of the snapper fishery and there are indications that this bycatch harvest rate may have risen. Estimated harvest rates in the target Kahawai recreational fishery in KAH 1 may have dropped between 1991 and 1994.

Target fisheries for tarakihi (baited line) red gurnard (longline and set net), flatfish and grey mullet . (set net), and tunas, kingfish, and striped makin (colling) exist and for some of them, enough data exist to estimate and compare harvest rates (now using all available data).

Target fisheries of measurable size exist for rock lobster, scallops, and green mussels and harvest rates were estimated for 1994 and 1996. No shellfish data were collected in 1991 and other than for rock lobster in 1996, the sounding of animals may have been inconsistent. The bag limits applying to most shellfish species appear to be limiting the harvest and perhaps causing high grading.

To reach 20 species, the estimated bycatch harvest rates of the snapper fishery were included for several species.

Size distributions collected from the three years were plotted and mean lengths and weights calculated. Where the data were sufficient, lengths from January to June were used. Some comparisons with the January to December data suggest that using data from part of the year introduces small differences in mean weight but such differences are unlikely to make a significant error when used to obtain a total tonnage estimate (given all the other errors involved in obtaining such estimates). For many of the size distributions shown, the sample size was small and data from different years may need to be amalgamated if estimating a mean weight.

- 5

Introduction

Three boat ramp surveys were carried out in the New Zealand fisheries management North region in 1991, 1994, and 1996. For each survey, recreational fishers were interviewed at boat ramps by trained survey interviewers at the end of their fishing trips. The interviewers asked a standard set of questions about number of fish of each species harvested, methods used, target species, location, and hours fished. The lengths of many of the fish that were landed were measured. The objectives of each survey were different and are outlined below. More detailed information is available elsewhere (1991 survey: Sylvester 1993a, 1993b; 1994 survey: Sylvester 1994a, 1995; 1996 survey: Hartill *et al.* 1998). This section draws heavily on an unpublished report by Todd Sylvester, Ministry of Fisheries, Auckland, entitled. "Catch rate comparisons for snapper and kahawai between the 1991, 1994, and 1996 boat ramp surveys".

The main objective of the 1991 survey was to obtain baseline data on recreational fishing harvest rates (HPUE) from boat ramps throughout the North region. Most of the Interviews were conducted at weekends. From Boxing Day 1990 to near the earl of January 1991, interviewing was done at the main ramps in the Bay of Islands, Tutukaka, Whangarei, the western and inner Hauraki Gulf, Manukau Harbour, eastern Coronander, and Tauranga. Interviewing was infrequent in February. From March to June, the survey involved 30 ramps throughout the North region. During this second phase, land-based surfcasters were also regularly interviewed at two west Auckland localities (Plan, Whatipu) and at two thay of Plenty localities (Matata, Opotiki to Te Kaha). Sylvester (1993b) gave details of the survey and the ramps used.

The main objective of the 1994 boat ramp survey was to check on aspects of the North region diary survey of marine recreational fishers being run at that the first suspected that the diary survey results might contain some biases introduced by inforeporting, wrong species identification, and inaccurate weight measurements. Initially, the 1994 survey concentrated on four main areas: Bay of Islands, Hauraki Gulf, Manukan Harbour, and the eastern Coromandel. The interview survey was expanded in March 1994 to other areas of the North region. Much interviewing (including ind-week) was done in the Hauraki Gulf as part of the aerial-boat ramp survey that was somucted at that time (Sylvester & Cryer, unpubl. results). Sylvester (1994a) described the inter-relationships between the boat ramp, aerial, and diary surveys that were being conducted in 1994 and Sylvester (1994b) gave details of the ramps used.

「ちっち」、「ちちはき」で、

.

The main objective of the 1996 interview survey was to obtain a representative sample of fish lengths caught by recreational fishers throughout the North region over a one year period. These find lengths were converted to fish weights and hence to a mean weight of a species caught by recreational fishers in a Fishstock. These mean weights were used to estimate the tonnage of the recreational barvests in the North region Fishstocks using an estimate of the number of fish caught obtained from the 1996 national diary survey (Bradford 1998a). Most of the interviews began in early January 1996, with heaviest sampling in the months to the end of April, less frequent sampling was conducted throughout the rest of the year. Midweek sampling was conducted in 1996. The 50 ramps used in the North region and the number of interview sessions at each ramp were given by Hartill *et al.* (1998).

The harvest rates for 1996 are discussed in detail. Comparisons are made for snapper and kahawai using restricted data so that all three surveys are comparably represented. All available data from the three surveys were used for other species. For these other species data are few and comparability less certain. Size frequency data from 1991, 1994, and 1996 are compared and mean lengths and weights (where possible) are calculated. The different priorities for the three surveys mean that the data are not necessarily strictly comparable. In 1991 and 1994, catch rate information was collected in preference to length data and in 1996 collection of length data was usually the first priority. The size data for the less common species are sparse and may not be representative of the fishery. The snapper and kahawai data are again treated in more detail than that for the other species. The 1996 length frequencies for the major species are given by Hartill *et al.* (1998) where further stratifications of the data were shown, particularly for snapper and kahawai. Some other comparisons of the kahawai data were given by Bradford (unpubl. results, Final Research Report to the Ministry of Fisheries, project KAM9701)

Programme objective

This work was carried out under contract to the Ministry of Fisheries within the modelling recreational fisheries project (REC9702) and fulfils the requirements of the third objective of the project for 1997-98:

• To compare fish size and catch rates of the 20 main species ho the 1996 boat ramp survey in the North region with results from earlier surveys in 1991 and 1994.

The recreational boat fishery in the North region in 1996

The North region recreational boat fisher, is dominated by the snapper fishery. All other target fisheries are small and few have sufficient data to allow good estimation of harvest rates. Thus there are considerable problems involved in selecting 20 species for which there are adequate data for meaningful comparison of harvest rates and size distributions. Rock lobster, for example, were not measured in 1991 and 1994, and flatfish and grey mullet were not included in 1991. I produce several tabulations of the 1996 harvest rate data by region, method, and target species to indicate the problem. Data from the earlier surveys differ in defail, but not in grass structure.

Nabulated the data from the 1996 boat ramp survey in the North region in various ways to investigate which harvest rates could be sensibly calculated. Detailed definitions of fishing methods were used in the surveys and I have grouped these methods into a limited set for convepience (Table 1).

Pable Contains further definitions used in this report and describes the quantities which are tabulated in the harvest rate tables (see Tables 14 onwards). Scientific names for the species are given in the section comparing size distributions (see Table 30). The harvest rates given in this section (see Tables 8, 10, 11, and 13) are calculated as the total catch divided by the total number of hours fished, that is, are ratio-of-means estimates (H_2 in Table 2).

The intention in the design of the 1996 boat ramp survey was to have the number of fishers interviewed proportional to the expected fishing effort. The actual results may not be proportional to fishing effort due to design modifications for cost reasons and unexpected changes in fishing effort (possibly caused by weather). The results shown are for the measurements made and may not represent the fishery.

A trip is defined as a fishing operation using a given method in a given location. Hence a fisher may have made more than one trip when interviewed. For example, a fisher mainly targeting snapper with a baited line who saw a school of kahawai and changed his fishing method to jigging or trolling (and target species to kahawai) would be recorded as undertaking two trips. Only trips made using a trailer boat were included in this analysis as trips from other boat types and from shore are unlikely to be properly represented in the data.

2

The harvest has been taken to include all fish "killed" and includes fish thrown back dead and undersized fish (snapper) landed. Todd Sylvester has previously estimated the catch rate of legal sized snapper (Sylvester 1993a, 1993b, 1994b, 1995).

Tables 3 and 4 give the percentages of trips by method and by region and target species. These tables show that over three-quarters of the trips were made by people using a bailed line (from a boat) and nearly all of these trips were targeting either snapper or a mixture or species (which would mostly have included snapper). Trolling was the next most frequent method and involved several target fisheries (striped marlin, kahawai, and tunas). Some species were targeted by a limited number of methods; for example, flatfish and grey mullet were targeted only by methods using a net.

Tables 5 and 6 tabulate the mean fishing times of trips by method and by region and target species. The overall mean time is about 3.5 hours. The high mean vishing time using the method called "Hand" in the Bay of Plenty arises from the way methods were grouped as Hand included potting and the mean included a number of trips that were potting for rock lobster where the pots were left in the water for about 12 hours. The methods that make up "Hand" will be treated separately when shellfish are discussed.

Tables 3-6 show the dominance of finfish in the North region recreational fishery and more detailed results for 10 important finfish (flatfish, grey mullet, red gurnard, John dory, jack mackerel, kahawai, kingfish, snapper, taraktini, and trevally) are shown. Tables 7 and 8 give their catches and harvest rates by method. The data have now been limited and all shore based methods, methods usually used for shelffish, and Other methods have been excluded. Tables 9 and 10 show similar data by region. Only a few of the cells in these tables show a large catch or a reasonable harvest rate thost harvest rates given are from bycatch fisheries).

Tables 11 and 12 show the carch and harvest rate for the 10 finfish species by target species. The numbers are shown in bold when the caught species matches the target species. Jack mackerel and John dory were targeted so hardly that these target trips were included in "Other finfish" (the targeted iaof mackerel narvest rates for the few trips involved was very high). A large fraction of the snapper be vally flatfish, and grey mullet were caught in the target fishery for those species and with comparatively high harvest rates. The target kahawai fishery also had a high harvest rate for the 10 finfish species individually by target species and fishing method.

Bramination of these tables shows that harvest rate can be well estimated for a few target fisheries where the number of trips made is reasonably large, and perhaps for some bycatch

fisheries

Another problem arises when year to year comparisons of data are to be made in that the fishing effort was sampled differently in 1991, 1994, and 1996. The 1994 survey was conducted mainly between February and June and surveying was heavily concentrated in the inner and western Hauraki Gulf. In 1991, there was little sampling in February. May and June are winter months when fishing effort is much lower and harvest rates may differ from those

in summer. The sampling at weekends and during the week was not in the same proportion in all surveys and not representative of the fishery in 1991 and 1994. In the 1991 survey, most sampling was carried out between 9 a.m. and 6 p.m. (Todd Sylvester, Ministry of Fisheries, Auckland, pers. comm.) though it is daylight for several more hours in summer.

Estimation of harvest rates

Harvest rates for snapper and kahawai from the 1996 survey (Tables 14 and 15) are tabulated and then compared across years using those parts of the data which are reasonably well represented in all three years. For other species, except kahawai, there are not enough trips surveyed to restrict the data.

The North region has been divided into diary zones (Figure 1). Sylvester (1994b) further subdivided the diary zones into smaller fishing locations named according to a feature within the location. For each species, estimation of harvest rates begins by using the smallest practicable area of fishing activity.

Harvest rates vary throughout the year and may vary depending upon whether the fish were caught during weekends and holidays, or during the week "Weekends" is taken to mean weekends and holidays. The variations in harvest rate during the year may be largely dominated by differences in availability of species to the vecteational fishery, but could depend on the skill mix of fishers with only the more experienced fishers fishing throughout the year. Cryer & McLean (1991) have pointed out the effect of the skill of fishers on harvest rate. Differences in harvest rate between weekends and weekdays could arise from a different skill mix of the fishers at these times (with a greater fraction of more experienced fishers fishing during the week). The tables contain the harvest rates for all the data available, for, summer (November to April inclusive) and wheter, and for summer weekends and weekdays.

The harvest rates tabulated are estimates of the true mean harvest rate, defined in Table 2 and, where applicable, given a mathematical definition in Appendix 1. Two methods of estimating the average harvest rate are used: the mean-of-ratios estimator, H1, and the ratiomeans estimator, H_2 , H_1 and H_2 estimate different quantities and usually have different mean-of-ratios estimator is often recommended in the literature (see, for example, Jones et al. 1995) when a measure of fisher satisfaction is required. When data are collected with equal probability, that is, at the end of a trip, then the sample estimator of H_1 is an unbiased estimator of H_1 for the population (Jones et al. 1995). The estimator of H_1 may be biased by errors in the individual harvest rates particularly when short fishing trips with high catches are involved, and its variance may be poorly defined (Pollock et al. 1997). The problems with the variance of H_1 seem to come from the distribution of trip harvest rates. which can be a mixture of low (zero) and high harvest rates. The ratio-of-means estimator is recommended when the total harvest is to be calculated by multiplying the harvest rate by an independent measure of effort. The estimator of H_2 using sample data collected using equal probability sampling is a biased estimator of H_2 for the population (Jones et al. 1995). The variance formulae for H_2 and its estimator are complicated approximations of the true variance. Appendix 1 gives the formulae for the c.v.s used here. A further quantity, p_0 , the probability of an unsuccessful trip is included. Equally, $1 - p_0$ (the probability of catching the species) could have been used and may be the best measure to use for bycatch fisheries.

Two estimates of mean harvest rate are tabulated for snapper and kahawai and the main target species. Previous published results have used the H_2 estimator (Sylvester 1993a, 1993b, 1994b, 1995). Though the primary use for this report is to calculate a measure of

catch rate which can be used as an expression of recreational satisfaction (H_1) , both estimates are given for compatibility with Sylvester's results.

A letter code (R) to describe the harvest rate is included for snapper and kahawai to simplify understanding the numbers in the tables. R is based on ranges of the mean-of-ratios estimator chosen for convenience (see Table 2).

No results are given when the number of trips involved in the space-time stratum was less than 20. Jones *et al.* (1995) suggested that at least 100 trips could be required to get reliable harvest rate means with actual confidence intervals of the expected size for the stated confidence level. They also showed that the actual confidence intervals were skewed, but become less so as the sample size increased. Results where the number of trips is less than 100, and all *c.v.s* should be viewed with caution.

Estimated snapper harvest rates in 1996

The trips selected in the estimation of harvest rates were those where snapper or "general fish" was the target and the method was either using a baited line or jigging with or without a bait. The estimated harvest rate of snapper is greater when snapper is the target, but I have assumed that most recreational fishers in the North region are hoping to catch snapper, unless they specify otherwise. Fishers specifying a "general fish" target are likely to be tess experienced (or perhaps more realistic) than those who specify a particular target species. The estimated harvest rates for the methods above are different far snapper, but the descriptions used for these methods makes them difficult to distinguish.

Table 14 contains the estimated snapper harvest rates by fishing location and time strata. The fishing locations are grouped by diary zone (see Figure 1) and represent an area around the named location (Sylvester 1994b). The rate of means estimator, H_2 , is usually smaller than the mean-of-ratios estimator, H_1 , but differences are generally small for the snapper data. The median value of p_0 (probability of an unsuccessful trip) is 0.45.

The lowest estimated snapper harvest rates tend to occur within harbours, particularly in winter. Sylvester (unpubly report) has pointed out that snapper become unavailable to the recreational fishery in harbours in winter, possibly because they move out of the harbours. The highest estimated snapper harvest rates occur away from the most populated areas, for example, Bream Bay, Coromandel Islands, and Opotiki.

Many of the space time strate used in Table 14 are based on trip numbers which are less than or not much more than 100. To have strate based on a larger number of trips, and to reduce the table to a more comprehensible size, the estimations were made by diary zone (Table 15). If the stimated harvest cates are not to be affected by extraneous factors, we have to assume that the sampling effort of trips made in each locality in the zone was roughly the same in each time stratum or that the harvest rate did not change much throughout the zone. These assumptions are not accessarily true in all areas.

Comparisons of estimated snapper harvest rates between years

Comparisons of estimated snapper harvest rates in 1991, 1994, and 1996 were made using the same method and target selections as above but limiting the data to weekends in March and April and for trips where the fishing ended between 0900 and 1800 hours to maximise the overlap between the surveys. Undersized snapper landed, and snapper thrown back dead, have been included which differs from the way harvest rates were defined by Sylvester (unpubl. data).

Table 16 contains the comparisons of estimated snapper harvest rates by diary zone tabulated in the same manner as the results in Table 15. There may be variations within the diary zones which may need to be investigated. The estimated harvest rates within some important harbours which do not form the whole of a diary zone are given in Table 17. These rates are generally low. The estimated harvest rates for the three years by diary zone are plotted in Figures 2–5. All the estimated harvest rates show the same general trends, being highest (lowest for p_0) in 1994 in most cases. The 1996 values are higher than the 1991 values in east Northland, the western and inner Hauraki Gulf, northern and middle Bay of Plenty and possibly Waikato. The 1996 estimated harvest rates are at their lowest values in Tauranga Harbour, the eastern Bay of Plenty and Manukau Harbour and at their highest in Whangarei Harbour and northern (and possibly middle) Bay of Plenty. The low estimated harvest rates in Ohiwi Harbour (Table 17).

Kahawai estimated harvest rates

Table 11 shows that kahawai are predominantly a bycatch of the snapper and "general fish", fisheries. Table 18 gives the estimated kahawai bycatch harvest rates by diary zone in KAH 1 and 9 and time stratum in 1996, and Fable 19 gives similar results with the data grouped by region (Bay of Plenty, East Normand, Hauraki Gulf, and west coast). These estimated harvest rates are generally low; they are highest in the Bay of Islands, the eastern Bay of Plenty, and the west coast. The estimated harvest rates tend to be higher in winter than Plenty, and the west coast are generally low and the differences between H_1 and H_2 are

generally small.

Tables 20 and 21 show the comparisons by year of the estimated kahawai bycatch harvest rates in March and April weekends by region and diary zone in KAH 1 and 9 respectively. The harvest rates for the three years by diary zone are plotted in Figures 6–8. These data suggest that the estimated kahawai harvest rate as a bycatch of the recreational snapper history insteased in most areas between 1991 and 1994.

Table 22 gives the harvest rates in the kahawai target fishery (any method with kahawai as Table 22 gives the harvest rates in the kahawai target fishery (any method with kahawai as the target species) by region and time stratum in 1996. These harvest rates are generally high (several times higher than the snapper bycatch kahawai harvest rate) and tend to be lower in winter than summer. The kahawai target fishery will include those fishers who set out to catch kahawai (these fishers would include the time taken to locate a kahawai school in their fishing time) and those who changed to targeting kahawai after they had sighted a kahawai school (and could have a high harvest rate and short fishing time).

Table 23 and Figure 9 show the year to year comparisons in the kahawai target fishery. As before, the comparisons are made for March and April weekends. As the number of trips made is small, these comparisons are made by kahawai Fishstock. There are indications that the kahawai target harvest rate dropped in KAH 1 between 1991 and 1994 and may have

increased somewhat in 1996. This harvest rate increased in KAH 9 between 1991 and 1994. There were too few kahawai target trips intercepted in KAH 9 at the relevant time for the 1996 data to be included in the comparisons; the kahawai target harvest rates were relatively high over the whole summer (again with a small sample size).

The values of H_1 are generally higher than those of H_2 . In the kahawai target fishery the differences can be large, probably because kahawai harvest rates can be high and the fishing time short after a school has been sighted. Short fishing times are hard to estimate accurately and can lead to biases in H_1 .

Two further estimates of harvest rate are considered for the kahawai target fishery in Appendix 2. These estimators both give values which are lower than the mean-of-ratios estimator, H_1 .

Other recreational target fisheries for finfish

There are recreational target fisheries for tarakihi, red gurnard, flatfish, grey maller, and tunas where the numbers of trips surveyed are large enough to allow adequate estimation of harvest rates. For these fisheries, all the trips recorded are included and the data stratified by summer and winter and for QMA 1 and 9. Comparisons by year are given. The data from the 1991 and 1994 surveys could be biased as the fishing effort was not sampled proportionalely. There are other target fisheries where the numbers of trips recorded or the harvests recorded are too small. These include kingfish and striped markin where we have the addes problem of catch and release making harvest rates much lower than catch rates.

Tarakihi

There is a substantial recreational target fisher) for tarakini using baited lines (including jigging). This fishery is predominantly in the eastern Bay of Richty and operates throughout the year. The estimated harvest rates are given in Table 24. The apparent increase in 1996 may be an artefact of the sampling regime when proportionately more sampling was done in the eastern Bay of Plenty. The size distributions of tarakihi (see Figure 16) suggest that a strong year class entered the fighter in 1996 which also may have affected harvest rates.

のないのである

Red gurnard

'lat fi≮

There is a small target fishery for red gurnard but it is a mixed method fishery including longline and set net. Estimated harvest rates in 1996 may be lower than in previous years (see Table 25) The diary survey results show the overall red gurnard harvest in 1996 was considerably lower than in 1994 (Bradford, unpubl data, Final Research Report to the Ministry of Fisheries, project REC9701 Objective 4).

There are target set and drag net fisheries for flatfish mainly in QMA 9 (see Table 26). Flatfish were not counted in the 1991 survey.

Grey mullet

There is a target set net fishery for grey mullet mainly in QMA 9 (see Table 26). Insufficient trips where recorded in 1994 to adequately estimate harvest rate, and grey mullet were not counted in 1991.

Skipjack and albacore tuna

There are several specialised troll target fisheries (with or without bait or fures) which catch a limited number of species. As might be expected from what is known of the seasonal distribution of tunas, these are predominantly summer fisheries, mainly in QMA 1. For skipjack tuna, the troll fisheries where skipjack tuna, albacore and vellowfin tunas, striped marlin, and "general" were the target were included. For albacore the troll target fisheries for albacore, striped marlin, and yellowfin tuna were included. The results are given in Itable 27. The estimated harvest rate of skipjack is variable and probably is parity related to the abundance of skipjack in New Zealand waters in any year. The estimated harvest rates of albacore are low and may have declined.

Despite the interest in targeting striped marin and vellowfin time, the success rate and total harvest in these fisheries are too low to allow adequate estimation of a harvest rate.

Target shellfish fisheries

The estimated harvest rates in the target fisheries for rock lobster, scallops, and greenshell mussels are considered. No shellfish were connted in 1991 and shellfish may not have been counted consistently in 1994.

Rock lobster are taken by diving (both scuba and snorkling) and by potting. These methods are considered separately as potting usually involves a long soak time, whereas diving trips are usually short. The estimated barvest rates by rock lobster Fishstock and season are given in Table 28. Diving is more common than potting and potting trips were recorded only from CRA 2. More rock lobster are caught per trip when using cray pots but not per hour (cray pots are generally in the water for 12 to 24 hours, diving trips are generally short). The bag limit of six may be limiting the catch taken from pots in CRA 2.

Scallops are taken by dredging and by diving (both scuba and snorkling). The results are given by areas which correspond to the scallop management areas. The estimated harvest rates (see Table 28) are comparable for the two method groups.

Greanshell mussels are taken by hand gathering and by diving. These methods have been treated together (see Table 28). It appears that recreational fishers can take their bag limit of 50 in somewhat less than an hour.

Other finfish in the snapper bycatch fishery

The objective requires that the harvest rates of the 20 most important species be estimated. The important target fisheries have already been considered. To get harvest rates as measured at boat ramps of 20 species, we need to include the bycatch of the snapper fishery. The estimated bycatch harvest rates of the snapper fishery are different from those for target fisheries.

The snapper fishery has been expanded to include the following nominated target species: snapper, blue and pink maomao, blue cod, John dory, kingfish, koheru, red gurnard, red snapper, and tarakihi. (Only one target species can be specified in the boat ramp surveys.) The method was baited hooks including jigging. Again, all trips using trailer boats are included and the estimated harvest rates are tabulated for QMAs 1 and 9 and for summer and winter. Strata where less than about 20 fish were caught are not tabulated. Table 29 gives the harvest rates in the snapper bycatch fishery for blue cod, blue maomao, John dory, jask mackerel, kingfish, koheru, pink maomao, red snapper, and trevally. The harvest rates are low to very low. They will be affected by the spatial distribution of the snapper fishery and by sampling effort. Only the results for the ratio-of-means estimator, H_2 , and the probability not catching the species, p_0 , are given.

Comparison of size distributions

Hartill et al. (1998) plotted the size distributions of the main species measured in 1996 boat ramp survey by species, area, season, and day type and tabulated mean lengths and weights. Bradford et al. (1998) compared the 1996 boat ramp survey size distributions and the size distributions collected by diarists. Bradford unpubl. Final Research Report to Ministry of Fisheries, project KAH9701) gave further comparison the kahawai size distributions from the boat ramp surveys

Table 30 contains the coefficients in the weight length relations used to estimate mean whole weights from lengths (where they are available) and includes the scientific names of the its and lengths together with their c.v.s for the size species. Table 31 contains the mean w distributions plotted in Figures 10

Snapper

ł

Again, the snapper size data are available in abundance. These data have already been used in various ways, mainly in association with the snapper stock assessment. Here a limited number of comparisons are given mainly using January to June data from all surveys to maintain compatibility with the 1994 data. Data have not been split by day type.

Figure 10 compares the January to June data from the three boat ramp surveys collected from SNA 1 and the part of SNA 8 in the North region. The minimum legal size for recreationally caught snapper was increased from 25 cm to 27 cm on 1 December 1994 and hence the mean snapper weights in 1996 are expected to be higher than before. Figure 11 shows the snapper size distributions (January to June data) in the two major subregions of SNA 1 used in the snapper stock assessment, that is, East Northland and the combined Hauraki Gulf and Bay of Plenty. Figure 12 is similar to Figure 11 but contains January to December data (for 1991 and 1996). The snapper mean weights tend to be slightly higher when the data from throughout the year are used (Table 31). If mean weights are being used to convert fish number estimates

to tonnage estimates, length samples should ideally be taken throughout the time period to which the number estimate applies, though the differences in mean weight when using different time periods are small and any change in tonnage will be small when compared with other possible errors in the tonnage estimates.

Kahawai

1996.

The kahawai size distributions differ from the snapper size distributions in that several modal peaks exist and the kahawai size distribution has a wider spread. This is somewhat exaggerated by measurers favouring length intervals of 5 cm, especially in 1991. A reduction in kahawai mean length can mean a strong 3⁺ year class (fish about 90 cm fork length) present in the fishery in that year, for example.

Figure 13 compares January to June size data from the three surveys from (KAH) and KAH 9 and Figure 14 compares the size data in East Northland and the Hauraki Gulf. Figure 15 compares both January to June and January to December data from the Bay of Plenty. For kahawai, the mean weights were slightly lower throughout the whole year than in the first six months (Table 31). Kahawai appear to suffer from "deconditioning" (become thinner) at some times of the year, including during the spawning period (Bradford 1998b).

Other QMS and related fintish species

For other species, all the available data are used in the size distributions to be compared. Sample sizes are small

Figure 16 compares the tarakihi size distributions from TAR 1 and the red gurnard size distributions from GUR 1. A strong year class appears to have entered the tarakihi fishery in 1996; the mean weight dropped between 1991 and 1994 and again between 1994 and 1996. The tarakihi harvest increased between the 1994 North region and the 1996 national diary survey (Bradford, unpub). Final Research Report to Ministry of Fisheries, project REC9701 objective 4. The red gurnard mean weight also dropped slightly between 1991 and 1994 and

Figure 17 compares the trevally size distributions in TRE 1 and the part of TRE 7 in the North region. The revally are generally smaller in TRE 7 than TRE 1, and the mean weight was highest in TRE 1 in 1994 and in TRE 7 in 1996. The number of fish measured in TRE 7 in reach year may be too small to estimate the size distribution well.

For most subsequent plots the number of fish measured may be too small to adequately estimate differences in size distribution from year to year. The species selected are those where the most length measurements are available. Rock lobsters were measured in 1996 only and their size distributions were plotted by Hartill *et al.* (1998) and are not repeated here. Some lengths measured in 1996 are available for other shellfish but may not be representative and are not given.

Figure 18 compares the blue cod size distributions from BCO 1 and the John dory size distributions from JDO 1. There are increases in mean size for these species but sample sizes are small.

Figure 19 compares the size distributions for jack mackerel and blue mackerel in OMA 1. The numbers measured of both these species has dropped from 1991 to 1996.

Figure 20 compares the 1994 and 1996 size distributions of flatfish in FLA 1 and grey mullet in GMU 1. These species are mainly caught by set net and samples collected during boat ramp surveys may not be representative.

Figure 21 compares kingfish and barracouta size distributions. Data from all the North region are used. Both these species grow large and the plots have been constructed to show the middle of the size range with data outside the range lumped at the end points. A minimum legal size of 65 cm is now in place for kingfish. The practice of catch and release is common for kingfish.

Non QMS species

Figure 22 compares the size distributions of albacore tuna and skipjack tuna caught throughout the North region. Observer data from the commercial tuna longliners on green weight and length (extracted from the observer database by Lynda Griggs, NIWA) were used to estimate weight length relations. Observers are used on the larger boats (Lynda Griggs, pers. comm.) which probably fish further away from the coast than most recreational fishers and these boats catch a wider size range of fish than the recreational fishers

Figures 23 and 24 compare size distributions of koheru (Decapterus koheru), parore (Girella (tricuspidata), red snapper (Centroberyx affinus), and pink maomao (Caproden longinanus) which are all caught mainly in association with the snapper fishery. These are important recreational species. No weight-length relations are available for them.

Discussion

This report first describes how, where, and for which target species the fish counted in the 1996 boat ramp survey were caught. This demonstrates the dominance of the snapper boat fishery in the North region and explains why the data to estimate harvest rates and most other species are limited. Thus the report is dominanced by estimated snapper harvest rates and size distributions. The estimated bycatch harvest rates of the snapper fishery were included for several species.

Two estimates of mean harvest rate and the probability of not catching the species have been tabulated for snapper, kahavai, and the main target species. Figures 2 to 9 show that all three estimates of mean harvest rate have the same bends over time and space, but the values of H_1 and H_2 may be different. Intuitively, the mean-of-ratios estimator, that takes an average of individual finners' harvest rates, should be used as an indicator of recreational satisfaction. Previous autolished harvest rates used the ratio-of-means estimator (Sylvester 1993a, 1993b, 1994b, 1995). The question of which estimator to use is one for fisheries managers. Of importante, is that the same estimator of mean harvest rate is used when making comparisons and that the data are collected in the same manner.

The lowest estimated mapper harvest rates tended to occur within harbours and the highest rates occurred away from the highly populated areas. Estimated kahawai harvest rates when rates occurred away from the highly populated areas. Estimated kahawai harvest rates when rates occurred away from the snapper fishery were generally low (most of the kahawai harvest is taken as a bycatch of the snapper fishery). Estimated harvest rates in the kahawai target fishery were much higher; in this fishery the two methods of estimating a mean harvest rate often give different results. The three boat ramp surveys had different emphases on their objectives and the sampling was stratified differently. To maximise comparability in the data, snapper and kahawai harvest rate comparisons were made using data collected during the day, at weekends, and during March and April. Estimates were obtained for diary zones. Estimated snapper harvest rates were generally highest in 1994. The 1996 values were higher than the 1991 values in East Northland, the western and inner Hauraki Gulf, the northern and middle Bay of Plenty, Waikato, and Kaipara.

The harvest rate of kahawai as a bycatch of the snapper fishery may have increased in some areas. The target kahawai harvest rate may have dropped in KAH 1 between 1991 and 1994 and may have increased somewhat in 1996. The target kahawai harvest rate increased in KAH 9 between 1991 and 1994, and there were insufficient data to make an estimate in 1996.

The target kahawai fishery (targeting surface schools) accounts for a small fraction of the kahawai recreational harvest in the North region (under 10% in the 1996 beat rand, survey). However, it probably dominates people's perceptions of the state of the kahawai fishery. Little is known about the percentage of the kahawai population that is on the surface at any time, but this percentage seems to be generally small (maybe about 10%) and probably variable depending on environmental factors.

The 1990s kahawai harvest rates in the Rienary Report (Annata et al. 1998) are for the snapper bycatch fishery. The earlier figures for the kahawai harvest rate (Penlington 1988) best approximate the kahawai target harvest rate.

Target fisheries for tarakibi (baited line), red gurnand (longline and set net), flatfish and grey mullet (set net), and tunas, kingfish, and striped marlin (trolling) exist and for some of them enough data exist to estimate and compare barvest rates (using all available data).

Target fisheries of measurable size exist for rock lobster, scallops, and greenshell mussels and harvest rates were estimated for 1994 and 1996. No shellfish data were collected in 1991 and, other than for rock lobster in 1996, the counting of animals may have been inconsistent. The bag limits applying to most shellfish species appear to be limiting the harvest and perhaps causing high grading

She distributions collected from the three years were plotted and mean lengths and weights estimated where the data were sufficient, lengths from January to June were used. Some comparisons with the January to December data suggest that just using data from part of the year may be introducing a small bias (in either direction depending upon the species). Thus, where the quantity of data allows, though any difference in tonnage would be small be used where the quantity of data allows, though any difference in tonnage would be small when compared with other errors in the tonnage estimates.

The size distributions of most of the species are inadequately defined in most years. Bradford (1998a) combined lengths measured in different years to estimate mean weights.

Acknowledgments

This work was funded by the Ministry of Fisheries, project REC9702. I thank Todd Sylvester for many useful discussions on the nature of the data and organising the boat ramp surveys; Bruce Hartill (NIWA, Auckland) who took over the running of the 1996 survey during the year, David Fisher (NIWA, Wellington) for supervising the loading of the 1996 data to the recreational fisheries database, Kevin Mackay (NIWA, Wellington) for loading the 1991 and 1994 data to the database, and Dave Gilbert, Mike Beardsell (NIWA, Wellington), and Kevin Sullivan (Ministry of Fisheries, Wellington) for useful comments to improve the clarity of the report.

References

- Annala, J. H., Sullivan, K. J., O'Brien, C. J., & Iball, S. D. (Comps) 1998: Report from Fishery Assessment Plenary, May 1998: stock assessments and yield estimates. (Unpublished report held in NTWA library, Wellington.)
- Blackwell, R. D. 1997: Abundance, size and age composition and sex ration of blue dod in the Marlborough Sounds, September 1995. New Zealand Fisheries Data Report No. 88
- Bradford, E. 1998a: Harvest estimates from the 1996 national marine recreational fishing 52 p. surveys. New Zealand Fisheries Assessment Research Document. 9826. 27 p.
- Bradford, E. 1998b: Unified kahawai growth parameters. NIWA Vectorical Report

Bradford, E., Fisher, D., & Bell, J. 1998: National marine recreational fishing survey 1996: snapper, kahawai, and blue cod length distributions from boat ramp and chary surveys. NIWA Technical Report 19. 49 p.

Cryer, M. & McLean, G. D. 1991: Catch for effort in a New Zealand recreational trout fishery - a model and implications for survey design. 4.6 YEd.) Catch effort Yn Cowt sampling strategies: their application in freshwater fisheries management. pp 61-71. Fishing News Books, Oxford, UK.

- Elder, R. D. 1976: Studies on age and growth, reproduction and population dynamics of red gurnard, Chelionichthys kumu (Lesson and Garnot), in the Hauraki Gulf, New Zealand.
- Fisheries Research Bulletin Morte, 62 p. Hartill, B., Blackwell, R., & Bradford, C in 1998: Estimation of mean fish weights from the recreational catch landed al boar pamps in 1998 NIWA Technical Report 31. 40 p.
- Hore, A. J. 1982: The age, growth, and reproduction of John dory, Zeus faber (Unpublished MSc thesis, University of Auckland
- 1994: Travki survey of middle depth and inshore bottom species N. W. Hurst, R. J. & Bagley, off Southland, February-March 1993 [PAN 9301]. New Zealand Fisheries Data Report No. 52.58 0

1984: Frevally, Carona geogianus: age determination, population biology and James, G. D. Ministry of Agriculture and Fisheries. Fisheries Research Bulletin No. 25. 51 p. Jones, C. M. Robson, D. S., Lakkis, H. D., & Kressel, J. 1995: Properties of catch rates used fishery analysis of angle surveys. Transactions of the American Fisheries Society. 124: 11)-928.

A study on age, growth, and population structure of the snapper, Chrysophy's auratus in the Hauraki Gulf. Fisheries Research Bulletin No. 13. 62 p. L. J.

- >> 1988: The kahawai fishery at the Motu River mouth. New Zealand Penlington, Ø Freshwater Fisheries Report 103. 27 p.
- Pollock, K. H., Hoenig, J. M., Jones, C. M., Robson, D. S., & Greene, C. J. 1997: Catch rate estimation for roving and access point surveys. North American Journal of Fisheries Management 17: 11-19.

Any target (% by method)	Target Flarfish Grey mullet Red gumard Kahawai Kingfish Snapper Tarakhli Trevally Trevally Mixed fish Any tuna Other finfish Striped marlin Any sharks Shellfish	Any Jarget Any Jarget (% by method) <i>Table 6</i> : Mean I defined in Table	Table 5: Mean le Table 1 means Region Region Bay of Plenty East Northland Hauraki Gulf
. 3. . 58	Bait 3.16 3.02 3.60 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.5	3.58 3.58 ength o 1 mea	no trips Bail 3.28 3.58
1.50	Dive	1.50 I trip (trip (h were n Dive 1.40
3.77	Expt	3.77 3.77 ips were	ade by Bade 10,69 1,69 1,69
	373-7437- 	made	1 109 12 Eho
3 .4 9	Lline	3,49 od and	1 and r
* 8	Nets 7 3.57 4.86 1.50 1.50 3.84 2.75 9.25 9.25 9.25 9.25 9.25 9.25 9.25 9.2	target	
3.77	noll 1.08 1.108 1.	1.77	
40	, , , , , , , , , , , , , , , , , , ,	in 1996	
	133		
6	· · · 8 · 8 · · 8 · · · · · · · · · · ·		
3,49			
•			
	Nethod FLA GMU GUR JDO JMA KAH KIN SNA TAR TR Barby	Line 0 0 104 2 0 5 2 116 0 Nets 837 318 2 1 0 80 0 6 2 11 Troll 0 0 10 3 1 602 28 17 9 11 Table 8: Harvest rates (fish per hour estimated by ratio-of-means) of flatfish (FLA), grey mullet (GMU), red guraned (GUR), John dory (JDO), jack mackerel (JMA), kahawal (KAH), kingfish (KIN), snapper (SNA), tanjkihl (TAR), and trevally (TRE) by method from the 1996 bost ramp	Table 7: Total harvest of Intfish (FLA), grey mullet (GMU), red gurnard (GUR), John dory (JDO), Jack mackered (JMA), kabawai (KAH), kingfish (KIN), snapper (SNA), tarakihi (TAR), and trevally (TRE) by method counted in the 1996 boat ramp survey Method FLA GMU GUR JDO JMA KAH KIN SNA TAR TRE Bait 2 6 1915 260 1 523 6 168 22.5 21 098 2.351 1 769 Dive 0 0 0 2 16 0 2.2 0 3 100 Her 0 0 40 9 96 368 36 740 33 100

Support of the second s

	(KIN), snapper (SNA), tarnakini (tarna and a yawi (tarna ya	Table 10: Harvest rates (Ref Por Incur estimated by Fath-of-membr) of flatfish (FLA), grey mullet (GMU), red gurnard (GUR) (John day's GDO), jack medered John Aystahawai (KAR), kingfish (GMU), red gurnard (GUR) (John day's GDO), jack medered John from the 1996 boat ramp	Region FLA GMU GIR JDO JMA KAH KIN SNA TAR TRE Bay of Plenty 83 1 123 100 1MA KAH KIN SNA TAR TRE Bay of Plenty 83 1 123 100 431 2133 139 6423 2188 615 Basi Northland 31 20 27 1558 110 4948 175 784 Hauraki Gulf 29 0 12 30 859 1152 38 8039 23 190 Hauraki Gulf 29 0 12 30 75 2397 28 2626 14 318	Table 9: Total harvest of flatfish (FLA), grey mullet (GMU), red gurnard (GUR), John dory (JDO), Jack mackerei (JMA)xkahawai (KAH), kingfish (KIN), snapper (SNA), tarakihi (TAR), and trevally (TRE) by region is counted in the 1996 boat ramp survey
Fladish 1.792 0.079 . 0.026 . 0.007 Grey mullet 0.003 1.186 0.238 . 0.021 . . 0.003 Red gurmard . 0.016 0.003 0.218 . 0.003 0.228 . 0.003 Kingfish . 0.016 0.003 0.218 . 0.003 0.228 . 0.003 0.025 Snapper . . 0.002 0.011 0.002 0.012 0.004 0.003 0.024 0.003 0.025 0.016 0.003 0.004 0.003 0.024 0.002 0.021 0.004 0.001 0.004 0.001 0.004 0.001 0.004 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.023 0.033 0.031 0.033 0.031 0.033 0.031 0.031 0.033 0.031 0.033 0.031 0.031 0.031 0.031 0.033 <t< td=""><td>Table 12: Harvest rates (fish per hour estimated as ratio-of-means) of flatfish (FLA), grey mullet (GMU), red gurnard (GUR), John dory (JDO), jack mackerel (JMA), kahawai (KAB), köngfish (KIN), snapper (SNA), tarakähi (TAR), and trevally (TRE) by target species from the 1996 boat ramp survey. The harvest rates in bold are when the caught and target species were the same ramp survey. The harvest rates in bold are when the caught and target species were the same</td><td>Snapper 9 0 30 13 4 68 2 250 1348 26 Trankliti 0 0 2 0 3 13 4 68 2 250 1348 26 Trevally 0 0 2 0 3 1 0 1 3 15 Mised fish 22 56 875 64 331 2613 67 3914 495 491 Any tuna 0 0 3 21 27 6 15 0 12 Other finfish 0 0 5 21 22 40 6 90 20 12 Striped martin 0 0 8 0 0 17 3 2 0 2</td><td>Target FLA GMU GUR JDO JMA KAH KIN SNA TAR TRE Flaffsh 812 36 0 0 12 0 0 3 Grey mullet 1 219 0 0 0 39 0 0 2 Red gunard 0 13 6 0 24 828 5 36 2 7 Kahawai 0 13 6 0 24 105 5 84 Kingfish 0 0 133 62 220 74 105 5 84</td><td>Table 11: Total harvest of flatfish (FLA), grey multet (GMU), red gurnard (GUR), John dory (JDO), jack mackerel (JMA), kahawai (KAH), kingfish (KIN), snapper (SNA), tarakihi (TAR), and trevally (TRE) by target species as counted in the 1996 boat ramp survey. The numbers in bold are when the caught and target species were the same</td></t<>	Table 12: Harvest rates (fish per hour estimated as ratio-of-means) of flatfish (FLA), grey mullet (GMU), red gurnard (GUR), John dory (JDO), jack mackerel (JMA), kahawai (KAB), köngfish (KIN), snapper (SNA), tarakähi (TAR), and trevally (TRE) by target species from the 1996 boat ramp survey. The harvest rates in bold are when the caught and target species were the same ramp survey. The harvest rates in bold are when the caught and target species were the same	Snapper 9 0 30 13 4 68 2 250 1348 26 Trankliti 0 0 2 0 3 13 4 68 2 250 1348 26 Trevally 0 0 2 0 3 1 0 1 3 15 Mised fish 22 56 875 64 331 2613 67 3914 495 491 Any tuna 0 0 3 21 27 6 15 0 12 Other finfish 0 0 5 21 22 40 6 90 20 12 Striped martin 0 0 8 0 0 17 3 2 0 2	Target FLA GMU GUR JDO JMA KAH KIN SNA TAR TRE Flaffsh 812 36 0 0 12 0 0 3 Grey mullet 1 219 0 0 0 39 0 0 2 Red gunard 0 13 6 0 24 828 5 36 2 7 Kahawai 0 13 6 0 24 105 5 84 Kingfish 0 0 133 62 220 74 105 5 84	Table 11: Total harvest of flatfish (FLA), grey multet (GMU), red gurnard (GUR), John dory (JDO), jack mackerel (JMA), kahawai (KAH), kingfish (KIN), snapper (SNA), tarakihi (TAR), and trevally (TRE) by target species as counted in the 1996 boat ramp survey. The numbers in bold are when the caught and target species were the same

t

•

.

Line Trolls Trolls Bait Dive Expt Jig Lline Nets Troll Jack macker Bait Dive Expt Jig Lline Expt Jig Lline Troll Troll Troll	<i>Table 13</i> : Harves method (Table 1) region Indicates Involved, and in it Method Flatfish Bait Dive Expt Lline Troll Grey mullet Expt Jig
	for 10 f ino harr allics whi FLA Q
	0.01 MU C
	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	nated b rate is rate is 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	
	\sim
$(\bigcirc)^{\checkmark}$	
Total States State	ble 13- ble 13- ethod ahawai Bait Dive Bapt Expt Lline Lline Expt Expt Froll Samppor
	, , , , , , , , , , , , , , , , , , ,
. ŝ	
	0.000 00 00 00 00 00 00 00 00 00 00 00 0
	0.000 0 0 0 TA
	0.22 0.22
0.24 0.24 0.02 0.02 0.02 0.02 0.02 0.02	
	8888,88 8888,88 8888,88

Junioralization of the contract

•

.

7 ·

,

	Whangarei Hau Whangacei H.	Russell	Cape Brett Rawhiti	Bay of Islands Black rocks	Whangaroa H	North Cape Io (Mangonui Taupo Bay	Table 14: Snapi time stratum to explanation of t Locality
Winter	rbour Total Summer Summer, weekend Summer, weekend	Summer, weekend Summer, weekday Winter Total Sumfler Sumner, weekend Sumner, weekend Sumner, weekday Winter	rotal Total Summer Summer, weekend Winter Total	Total Summer Summer, weekend Summer, weekday	Summer, weekend Total Summer Summer, weekend Summer, weekday	Cape Brett Total Summer Summer Workupd Schenk Workupd Without Workupd	Per harrest rueer für 1996, vherer marga 1996, vherer marga he column frading he column frading
26	307 281 192	ទីទី១៩៩	221 4 2 3 5 8	57 I 39 57 I 39	3222	SEEESS	the per he
5	673 656 448	*******	S 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5)\$=587		ur) by Jeneral
	1012 306	100 181 273 190 100 100 100 100 100 100 100 100 100			22222		baited fish" pressed
0.182	0.672 0.718 0.701 0.753	0.441 0.636 0.519 0.408 0.408 0.308 0.308					line or was th 1 as per <i>H</i> ₁
	9.0 16.4	15.1 15.1 15.1 15.1 15.1 15.1 15.1 15.1		je i s	Can a 2	59 115 115 115 115 115 115 115 115 115 1	: jiggiq ne targ rcentag
0.19 57	0.612 0.648 0.634 0.634	0.376			00000	0.533 0.535 0.535 0.530 0.530 0.530 0.530 0.526 0.526 0.526	et. Se Hyfit
بو ئ	16.3 3.4			(AAF -		18.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19	e Tabl
	0.41 0.38 0.34	**************************************			0.74 0.75 0.57	0.42 0.37 0.39	e 2 for Po
100	2844	\$\$\$\$\$ \$ \$\$\$			15.7 15.7 15.8	う 4 4 86 86 86 88 88 86 CJ 86 F O 86	and and
						000=000	₽
		$) \sim \langle \langle \langle \rangle \rangle$	\sim				*
^		(\mathcal{A}_{Λ})	\diamond				
	2/2	///		•			
	$\langle \rangle$						
		¥	< 5				0 5 9
		Mid Hauraki G Omaha Bay	larrier Islands Little Barner Vestern Gulf Kawau	Tutukaka	Taibaruru	Hen&Chickeas Poor Knights	able 14 con .ocality .ape Brett to C Bream Bay
	Summer, weekda Summer, weekda	Summer, weeken Summer, weeken Total Summer, weeken Summer, weeken Summer	Total Total	Summer, weekda Total Summer, weeken Summer, weeken	Summer, weekday Summer, weekday Wiater Total Summer	Summer, wecken Summer, weckda Total Summer, wecken Summer	licuted Time stralum ape Rodney Total
$(\bigcirc)^{*}$	~ 6		N	802222		55488435	119
	82888		22 33 34	ងត្តត្រូត្តម្	525255	228119201122	2 3
	748 m 8		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	84832	3275553	4 5 6 2 2 4 5 8 5 8 5	· 7 · · · · · · · · · · · · · · · · · ·
	2533		36 0.3 28 0.0	200031			
	\$3664	201220228	180 I	******	36282823	336888384	28 2,
	553333 8 9 9 9 9 9 9 9		8.8 0, 0,				
	414	1348777898	690 2 614	28828	8682888		54 3
			9.4 C			21000000000000000000000000000000000000	2.9 0.
	31222		<u>9</u>	522255 129953	5 5 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	584343883 - • = = = = = = = = = = = = = = = = = =	34 8
	000m		0.7 B	000000 00000	00000m	00000>>> •••P•d2-9	ο × ×

. .

•

ł

ţ

•

- --

•

	Eastern Gulf Coromandel 1	Firth of Thame Firth Thames	Tamaki Str.	Rangitolo Ch.	Noisies Group	Inner Gulf Motuihe Ch.	Locality	Table 14 cot
	s. Total Summer Summer, weekend Summer, weekday Winter	es Total Summer, weekend Summer, weekday Winter	Summer, weekday Winter Total Summer Summer, weekend Summer, weekday Winter	Summer, weekday Winter Total Summer	Summer, weekend Summer, weekday Winter Total Summer	Total Summer	Time stratum	stinued
·		N N V	255885		288738	4 14		
	<u>55438</u> 2	N C 2 2 C	5978288	<u>- 2 5 7 7 8</u>		<u> </u>		
	369 267 102	961 719 531 188 188		553258 -	335885		list H	
	3 052 1 582 1 429 1 470	1 439 1 164 284 275	285 1152 118 118 886	3 5 4 5 2 3 3 3 9 4 5 4 5 2 3 3	5 88 88 88 88 88 88 88 88 88 88 88 88 88	<u>)</u>) 1 1 1 1 1 1 1 1 1 1	
	0.850 0.770 0.373	0.723 0.665 0.654 0.692 0.992	0.725 0.165 0.562 0.575 0.560 0.519	0.334	0.345		, H	
	68554	18.3 8.1 8.1	123 145 124	2122		<u> </u>	C.V.	
·	00000	0.000	0.53			0.4		
	4904276	50.000 50.000	1400840G	32 2 3)	\$\).		
		56666	0000000	مان بو مان با	$\mathbf{x}_{\mathbf{x}} \sim \mathbf{x}_{\mathbf{x}} \sim \mathbf{x}_{\mathbf{x}}$			
).25).24).24	229224		- 15 8 8 8 4 4		$\tilde{2}$	Ро	
	2.1 3.0 14.6 2.9	3.0 3.4 7.1 6.5	ALEXXES				C.N.	
	> 0 > @ >	>~~~~~~~					70	
		C	$\langle \rangle \rangle \langle \rangle \rangle$	$\langle \rangle \rangle \langle \langle \rangle$				
			$\sim \tilde{c}$	\searrow				
2		$\langle \rangle$)				
		())	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
•								
	\sim	> (\sim					
						7	۰۲	r
2	A)	Popular (Middle	Whang	Shoe &	Norther Mercur	Locality	Table 14
		Paparmed By	Middle Bay of Manakama Is.	Whan gameta	Shoe & Slipp	Northern Bay Mercury Bay	Locality	Table 14 co
		Papamoti Bhly 7	Middle Bay of Plent Matakana Is. To Su Marot Is. To	Whangameta To Su Su Wi	Shoe & Slipper To Su Su Su	Northern Bay of Pie Mercury Bay To Su Su	Locality Tin	Table 14 continu
		Hopefis Hopefis Summer Summer Summer Summer Night	Middle Bay of Plenty Matakana Is. Total Summer, Summer, Summer, Winter Total	Whangamata Total Summer, Summer, Winter	Shoe & Slipper Total Summer Summer, Summer, Winter	Northern Bay of Pleaty Mercury Bay Total Summer Summer,	Locality Time strat	Table 14 continued
		Winer Total Summer Summer Summer, weekend Supmer, weekend Wijher Papambe Bohr 76pt	Middle Bay of Plenty Maiakana Is. Total Summer, weekend Summer, weekend Winter	Whangamata Total Summer, weekend Summer, weekday Winter	Shoe & Slipper Total Summer, weekday Summer, weekend Summer, weekday Winter	Northern Bay of Plenty Mercury Bay Total Summer Summer, Woekead	Locality Time stratum	Table 14 continued
A HE		Vinter 122 Mond Is. Total 81 Summer weekend 81 Summer weekend 48 Summer weekend 48 Summer weekend 48 28 Papamoa Béh Trijar 84	Middle Bay of Plenty Matakana Is. Total Summer, weekend 186 Summer, weekend 186 Summer, weekend 189 Mayot Is. Total 39	Whangamata Total 153 Summer, weekend 77 Summer, weekday 25 Winter 76	Summer, weekday 64 Shoe & Slipper Total 454 Summer 333 Summer, weekday 80 Winter 121	Northern Bay of Plenty Mercury Bay Total 188 Summer 188 Summer, weekead 127	Locality Time stratum n	Table 14 continued
	Stringer Stringer Walks	Vinter Hoyd Is. Total Summer Summer, weekend 48 81 Summer, weekend 48 81 Nither Papamota Bdv 76ypr 84 22	Middle Bay of Plenty Matakana Is. Total. Summer 328 828 Summer, weekend 186 485 Winter 139 99 Mayor Is. Total 38 79	Whangameta Total 153 281 Summer, weekend 32 129 Summer, weekday 25 60 Winter 76 92	Summer, weekday 61 91 Shoe & Slipper Total 454 730 Summer 333 532 Summer, weekday 80 135 Winter 121 227	Northern Bay of Plenty Mercury Bay Total 188 240 Summer 188 240 Summer, weekead 127 149	Locality Time stratum a Fish	Table 14 continued
	Science vectors 40 124	Winer 22 43 8 Mond Is. Total 87 158 34 Summer, weekand 87 158 34 Summer, weekand 48 88 11 Papambe Bah 70 10 10 Wilher 28 106 11 Bah 70 10 12 Wilher 84 23 30 10	Middle Bay of Plenty Maakana is. Total Summer 328 828 112 Summer, weekend 186 485 59 Summer, weekend 186 485 59 Winter 139 99 46 Winter 38 79 17	Whangameta Total 153 281 42 Summer 77 189 18 18 18 18 18 12 12 12 12 12 12 12 12 12 12 16 60 6 60 6 60 6 76 92 24	Shoe & Slipper Total 454 739 168 Shoe & Slipper Total 454 739 168 Summer 333 532 117 Summer, weekday 80 135 29 Winter 121 227 49	Northern Bay of Pienty Mercury Bay Total 188 240 51 Summer 188 240 51 Summer, weekend 127 149 33	Locality Time stratum n Fish Hou	Table 14 continued
	Suffmet Suffmet Mines 41 100 115 0	Winter 12 43 86 0.1 Mont Is. Total 11 264 471 0.1 Summer: weekend 87 158 343 0.1 Summer: weekend 48 88 180 0.2 Summer: weekend 48 88 180 0.2 Summer: weekend 48 88 180 0.2 Winter 28 106 128 0.1 Winter 28 106 128 0.1 Winter 28 106 128 0.1 Winter 84 70 164 0.1 Winter 84 228 315 0.1	Middle Bay of Plenty Matakana Is. Total: 467 927 1 594 0.4 Summer, weekend 186 485 598 0.9 Summer, weekend 186 485 598 0.9 Summer, weekend 186 485 598 0.9 Mayor Is. Total 139 99 466 0.1 38 79 175 0.5	Whangamata Total 153 281 429 0.0 Summer 77 189 187 0.5 Summer, weekend 32 129 128 0.9 Summer, weekend 32 560 60 0.8 Winter 76 92 242 0.4	Summer, weekday 61 91 182 0.3 Shoe & Slipper Total 454 739 1.662 0.2 Summer 333 532 1.173 0.5 Summer, weekday 80 135 295 0.4 Winter 121 227 490 0.6	Northern Bay of Pienty Mercury Bay Total 188 240 511 0.5 Summer 188 240 511 0.5 Summer, weekead 127 149 330 0.5	Locality Time stratum n Fish Hours	Table 14 continued
	Suffmeter Suffmeter Wanser vectored 24 71 89 0.996 44 100 185 0.490	Winner 12 43 86 0.660 Moord Is. Total 11 2.64 471 0.600 Summer Summer, weekand 87 158 343 0.517 Summer, weekand 48 88 100 0.440 Papamota BAP Winter 28 106 128 0.873 Hour Summer Weekang 39 70 164 0.612 Summer Weekang 28 106 128 0.873 B4 213 315 0.840 128 0.840	Middle Bay of Plenty Matakana Is. Total. 467 927 1 594 0.614 Summer, weekend 186 485 598 0.910 Winter 132 828 1 128 0.796 Mayor Is. Total 199 466 0.185 1	Whangameta Total 153 281 429 0.659 1 Summer 77 189 187 0.903 1 Summer, weekend 32 52 60 60 0.801 2 Winter 76 92 242 0.413 2	Summer, weekday 61 91 182 0.358 Shoe & Slipper Total 454 759 1662 0.574 Summer, weekend 253 397 877 0.609 1 Summer, weekday 80 135 295 0.421 1 Winter 121 227 490 0.601 2	Northern Bay of Plenty Mercury Bay Total 188 240 511 0.543 1 Summer 188 240 511 0.543 1 Summer, weekead 127 149 330 0.545 1	Locality Time stratum n Fish Hours H,	Table 14 continued
	Suffyrer Synthese vectors 24 100 123 190 1222 1201 Munor 44 100 185 0.490 165	Winner 12 24 86 0.660 32.5 Hoyd Is. Total 13 264 471 0.604 32.5 Summer 18 158 343 0.517 17.1 Summer, weekend 48 88 180 0.440 22.0 Summer, weekend 39 70 164 0.612 25.7 Papamota BA Yogar 84 228 106 128 0.873 17.5	Middle Bay of Flenty 467 927 1 594 0.614 7.5 (Matakana Is. Total. 328 828 1 128 0.796 7.8 (Summer Summer, weekend 186 485 530 0.647 12.4 (12.4 33 530 0.647 12.4 (132 92 466 0.185 12.6 (12.4 33 79 175 0.555 73.9 ((33 79 175 0.555 73.9 ((132 175 0.555 73.9 ((132 175 0.555 73.9 ((136 175 0.555 73.9 ((136 175 0.555 73.9 ((136 175 0.555 73.9 ((136 175 0.555 73.9 ((136 175 0.555 73.9 ((175	Whangameta Total 153 281 429 0.659 11.2 (Summer 77 189 187 0.903 12.5 1 <th>Summer, weekday 61 91 182 0.538 194 0 Shoe & Slipper Total 454 739 1662 0.574 10.9 (Summer 333 532 1173 0.564 12.5 0 Summer, weekday 80 135 295 0.421 15.4 0 Winter 121 227 490 0.601 21.9 0</th> <th>Northern Bay of Plenty Mercury Bay Total 188 240 511 0.543 12.6 (Summer 188 240 511 0.543 12.6 0 Summer, weekead 127 149 330 0.545 16.3 0</th> <th>Locality Time stratum a Fish Hours H, c.v.</th> <th>Table 14 continued</th>	Summer, weekday 61 91 182 0.538 194 0 Shoe & Slipper Total 454 739 1662 0.574 10.9 (Summer 333 532 1173 0.564 12.5 0 Summer, weekday 80 135 295 0.421 15.4 0 Winter 121 227 490 0.601 21.9 0	Northern Bay of Plenty Mercury Bay Total 188 240 511 0.543 12.6 (Summer 188 240 511 0.543 12.6 0 Summer, weekead 127 149 330 0.545 16.3 0	Locality Time stratum a Fish Hours H, c.v.	Table 14 continued
	Suffmer Suffmer Westend 28 73 130 1.225 20.22 0.240 Mune 44 100 185 0.490 16.5 0.540 16.5 0.540	Winter 12 43 86 0.660 12.5 0.503 Mood Ls. Total 11 26 471 0.664 12.8 0.503 Mood Ls. Summer, weekend 87 158 343 0.517 17.1 0.461 Summer, weekend 48 88 180 0.440 22.0 0.490 Summer, weekiday 39 70 164 0.612 25.7 0.428 Winter 28 106 128 0.873 17.5 0.828 Papamot Bph/ 70 yr 64 223 315 0.840 15.6 0.723	Middle Bay of Plenty 467 927 1 594 0.614 7.5 0.581 Manakana Is. Total: 328 828 1 128 0.796 7.8 0.734 Summer, weekend 186 485 598 0.910 9.9 0.811 Summer, weekend 186 485 598 0.910 9.9 0.811 Mayor Is. Total 139 92 466 0.185 12.4 0.212 Mayor Is. Total 38 79 175 0.555 23.9 0.451	Whangamata Total 153 281 429 0.659 11.2 0.655 Summer 77 189 187 0.903 12.5 1.010 Summer, weekend 32 129 128 0.903 12.5 1.010 Summer, weekend 32 129 128 0.931 12.5 1.000 Summer, weekday 25 60 60 0.801 24.5 1.003 Winter 76 92 242 0.413 21.1 0.381	Summer, veekday 61 91 182 0.538 19.4 0.500 Shoe & Slipper Total 434 739 1.662 0.574 10.9 0.457 Summer 333 532 1173 0.669 14.9 0.453 Summer, veekday 80 135 295 0.421 15.4 0.457 Winter 121 227 490 0.601 21.9 0.464	Northern Bay of Plenty Mercury Bay Total 188 240 511 0.543 12.6 0.469 Summer 188 240 511 0.543 12.6 0.469 Summer, weekend 127 149 330 0.545 16.3 0.452	Locality Time straium n Fish Hours H_1 , c.v. H_2	Table 14 continued
	Suffmeer Weetend 24 73 130 1.22 2.02 0.000 16.2 Suffmeer Weetend 24 73 150 0.225 2.0.2 0.0173 19.5 Kinner Weetend 24 100 185 0.490 16.5 0.540 18.5 Kinner Weetend 24 100 185 0.490 16.5 0.540 18.5	Winner 22 43 86 0.660 32.5 0.503 36.2 Mond Is. Total 5 115 264 471 0.6060 12.8 0.503 36.2 Summer 87 158 343 0.517 17.1 0.461 17.2 Summer weekend 48 88 180 0.440 22.0 0.490 11.8 Summer weekend 48 88 180 0.440 22.0 0.490 11.8 Summer 39 70 164 0.612 25.7 0.428 28.0 Papamota BAT 70 jar 28 106 12.8 0.840 15.6 0.73 12.6	Middle Bay of Plenty 467 927 1594 0.614 7.5 0.581 6.6 Matakana Is. Total 328 828 1128 0.796 7.8 0.734 7.1 Summer, weekend 186 485 598 0.910 9.9 0.811 8.8 Mayor Is. Total 139 9.9 466 0.185 12.6 0.212 13.5 Mayor Is. Total 39 79 175 0.555 23.9 0.451 23.7	Whangamata Total 153 281 429 0.659 11.2 0.655 11.3 Summer, 77 189 187 0.903 12.5 1.010 14.1 Summer, weekend 32 500 60 0.801 2.45 1.006 2.16 Winter Veekend 35 60 60 0.801 2.45 1.008 2.16 Winter 76 92 242 0.413 21.1 0.381 17.5	Summer, weekday 61 91 182 0.338 194 0.500 18.4 Shoe & Slipper Total 454 759 1.662 0.574 10.9 0.457 6.7 Summer 333 532 1.173 0.564 12.5 0.454 8.3 Summer, weekday 80 135 295 0.421 15.4 0.457 17.1 Winter 121 227 490 0.601 21.9 0.464 11.1	Northern Bay of Plenty Mercury Bay Total 188 240 511 0.543 12.6 0.469 9.8 Summer 188 240 511 0.543 12.6 0.469 9.8 Summer, weekead 127 149 330 0.545 16.3 0.452 11.1	Locality Time stratum n Fish Hours H_1 , c.v. H_2 c.v.	Table 14 continued
	Suffiguente Suffiguente Manuer Water Manuer	Winner 12 24 86 0.660 32.5 0.533 36.2 0.53 Moord Is. Total 11 22 43 86 0.660 32.5 0.533 36.2 0.533 36.2 0.533 36.2 0.533 36.2 0.541 17.1 0.604 12.8 0.560 12.3 0.430 17.2 0.411 17.2 0.471 17.2 0.471 21.8 0.593 3.5 0.540 12.8 0.540 12.8 0.540 12.8 0.540 12.8 0.540 12.8 0.540 12.8 0.540 12.8 0.540 12.8 0.540 12.8 0.540 12.8 0.540 12.8 0.540 12.8 0.540 12.8 0.540 12.8 0.540 0.33 0.540 0.517 17.5 0.523 12.6 0.33 0.540 0.516 0.723 12.6 0.33 0.517 17.5 0.523 12.6 0.33 0.516 0.723 12.6	Middle Bay of Plenty 467 927 1 594 0.614 7.5 0.581 6.6 0.45 Matakana Is. Total: 328 828 1 120 0.796 7.8 0.734 7.1 0.37 Summer, weekend 186 485 598 0.910 9.9 0.811 88 0.32 Mayor Is. Total 197 9.9 466 0.185 12.6 0.212 13.5 0.63 Mayor Is. Total 38 79 175 0.555 23.9 0.451 23.7 0.47	Whangameta Total 153 281 429 0.659 11.2 0.655 11.3 0.44 Summer, 77 189 187 0.903 1.2.5 1.010 14.1 0.34 Summer, weekend 32 52 12.8 0.952 14.6 1010 16.4 0.29 Summer, weekend 25 60 60 0.801 24.5 1008 2.7.6 0.44 Winter 76 92 2.42 0.413 21.1 0.381 17.5 0.54	Summer, weekday 61 91 182 0.538 194 0.500 184 0.52 Shoe & Slipper Total 454 739 1662 0.574 10.9 0.457 6.7 0.45 Summer 333 532 1173 0.564 12.5 0.454 8.3 0.47 Summer, weekday 80 135 295 0.421 15.4 0.457 17.1 0.45 Winter 121 227 490 0.601 21.9 0.464 11.1 0.40	Northern Bay of Pienty Mercury Bay Total 188 240 511 0.543 12.6 0.469 9.8 0.47 Summer 188 240 511 0.543 12.6 0.469 9.8 0.47 Summer, weekead 127 149 330 0.545 16.3 0.452 11.1 0.45	Locality Time stratum n Fish Hours H, c.v. H2 c.v. pa	Table 14 continued
A A A A A A A A A A A A A A A A A A A	Suffyreter Suffyreter Wanger Wanger At 100 185 0.490 165 0.540 185 0.29 11 Wanger At 100 185 0.490 165 0.540 185 0.29 11 11 11 10 11 11	Winter 22 43 86 0.660 32.5 0.503 36.2 0.535 23.5 Mood Ls. Total 87 158 471 0.604 12.8 0.560 13.0 0.40 7.0 Summer Weekend 87 158 343 0.517 17.1 0.461 17.2 0.47 7.0 Summer/weekend 48 88 180 0.440 22.0 0.490 21.8 0.53 17.7 Summer/weekend 39 70 164 0.612 25.7 0.428 28.0 0.33 11. Papamore Behr 70 jubr 84 228 106 128 0.873 17.5 0.828 17.9 0.18 8. Vighter 84 228 315 0.840 15.6 0.721 12.6 0.31 7.	Middle Bay of Plenty 467 927 1 594 0.614 7.5 0.581 6.6 0.45 4.1 Manakana Is. Total 328 828 1 128 0.796 7.8 0.734 7.1 0.37 4.3 Summer, weekend 186 485 598 0.910 9.9 0.811 8.0 0.32 5.1 Mayor is. Total 139 9.9 466 0.85 12.4 0.647 11.7 0.42 1.1 Mayor is. Total 38 79 175 0.555 23.9 0.451 12.7 0.47 15.4	Whangamata Total 153 281 429 0.659 11.2 0.655 11.3 0.44 7.1 Summer 77 189 187 0.903 14.5 10.01 14.1 0.34 8.1 Summer, weekend 32 129 128 0.903 14.6 10.10 16.4 0.29 8.1 Summer, weekend 32 50 60 680 24.5 10.08 27.6 0.44 17.7 Winter 76 92 242 0.413 21.1 0.38 17.5 0.54 12.4	Summer, weekday 61 91 182 0.538 194 0.500 184 0.52 134 Shoe & Slipper Total 454 739 1662 0.574 10.9 0.457 6.7 0.45 4.2 Summer 333 532 1173 0.564 12.5 0.454 8.3 0.47 5.1 Summer, weekday 80 135 295 0.421 15.4 0.457 17.1 0.45 10.1 Winter 121 227 490 0.601 21.9 0.464 11.1 0.40 7.4	Northern Bay of Plenty Mercury Bay Total 188 240 511 0.543 12.6 0.469 9.8 0.47 6.5 Summer 188 240 511 0.543 12.6 0.469 9.8 0.47 6.5 Summer, weekead 127 149 330 0.545 16.3 0.452 11.1 0.45 8.0	Locality Time straium n Fish Hours H, c.v. H2 c.v. p0 c.v.	Table 14 continued
A HHH	Suffmer Suffmer Manuer	Winter 12 43 86 0.660 31.5 0.503 36.2 0.53 7.4 B Mond Ls. Total 11 264 471 0.604 12.3 0.503 36.2 0.53 7.4 B Summer 15 264 471 0.604 12.3 0.501 13.0 0.407 7.6 B Summer/ weekend 48 88 180 0.440 12.0 0.490 11.8 0.33 17.1 C Summer/ weekend 48 88 180 0.440 12.0 0.490 11.8 0.33 17.1 C Summer/ weekend 48 88 180 0.440 12.0 0.490 11.8 0.33 17.1 C 0.47 10.1 C 3.1 3 3.1 3 3.4 3.5 0.50 0.73 12.6 0.31 13.3 A 3.5 0.50 0.73 12.6 <	Middle Bay of Plenty 467 927 1594 0.614 7.5 0.581 6.6 0.45 4.1 B Matakana Is. Total 328 828 1128 0.796 7.8 0.734 7.1 0.37 4.2 B Summer, weekend 186 485 598 0.910 9.9 0.811 8.8 0.32 5.1 A Mayor is. Total 139 9.9 466 0.185 12.5 0.631 11.7 0.47 15.4 C	Whangamata Total 153 281 429 0.659 11.2 0.655 11.3 0.44 7.1 B Summer 77 189 187 0.903 12.5 1.010 14.1 0.34 8.1 A Summer, weekend 32 129 128 0.903 12.5 1.010 16.4 0.29 8.8 A Summer, weekday 25 60 60 0.801 24.5 1.008 27.6 0.44 7.1 B Winter 76 92 242 0.413 21.1 0.381 17.5 0.54 12.4 C	Summer, weekday 61 91 182 0.538 194 0.500 184 0.52 13.4 C Shoe & Slipper Total 454 759 1662 0.574 10.9 0.457 6.7 0.45 4.2 C Summer 333 532 1173 0.564 12.5 0.454 8.3 0.47 5.1 C Summer, weekday 80 135 295 0.421 15.4 0.457 17.1 0.45 10.1 C Summer, weekday 80 135 295 0.421 15.4 0.457 17.1 0.45 10.1 C Winter 121 227 490 0.601 21.9 0.464 11.1 0.40 7.4 B	Northern Bay of Plenty Mercury Bay Total 188 240 511 0.543 12.6 0.469 9.8 0.47 6.9 C Summer 188 240 511 0.543 12.6 0.469 9.8 0.47 6.9 C Summer, Weekead 127 149 330 0.545 16.3 0.452 11.1 0.45 8.0 C	Locality Time stratum n Fish Hours H, c.v. H2 c.v. p0 c.v. R	Table 14 continued

•

,

1

a a constantina subdata a subdata subd A subdata subdat

	Whale Island	Cape Runaw	; Opotiki	Ohiwa H.	Eastern Bay of Matata Beach	Te Puna Intet	761781	Cocality Fauranga Harb Katikati	rable 14-cont	
Summer, weekday Winter	Summer, weekend Summer, weekday Winter 4 Total Summer	Summer, weekday Winter ay Total Summer	Summer	Winter Total Summer weekend	Plenty Total Summer Summer, weekend Summer, weekend	Tals - Commer Summer, weekend Summer, weekend Summer, weekend	Summer, weeksno Summer, weeksno Summer, weeksno Summer, weeksno		Inved	
9 71 219 211 1.041 15.8 1.098 13.0 9 138 309 0.442 18.3 0.447 18.2 0.57 18.2 2	1 101 240 423 0.520 13.8 8567 146 0.50 54 203 346 889 0.408 13.3 0.38 13.1 0.51 7.4 295 556 899 0.609 9.5 0.619 8.9 0.46 7.4 206 418 590 0.682 11.0 0.709 10.2 0.41 5.4 206 418 590 0.682 11.0 0.709 10.2 0.41 5.4	47 185 137 Nove Did Nove 155 056 (59 9) 133 208 402 0.387 164 0.428 155 056 (59 9) 273 478 1093 0.418 140 0.426 155 056 (59 9) 273 478 1093 0.418 140 0.426 195 0.51 0.5 273 478 1093 0.418 140 0.426 195 0.5 273 478 1093 0.418 140 0.426 195 0.5 273 478 1093 0.418 140 0.426 195 0.5 274 476 824 195 0.418 140 0.426 195 0.5 275 478 1093 0.418 140 0.426 195 0.5 275 478 1003 0.418 100 0.418 100 0.5 275 478 100	25 77 6 000 0.008 100/ 0.008 000 0.00 364 878 007 0 007 23 0.820 70 0.00 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0	97 198 0.99 1.238 0.040 41.1 0.040 196 0.99 366 E	138 432 404 1/13 1/3 1.069 9.6 0.33 6.2 A 13 134 235 195 195 199 9.96 13.1 0.33 6.2 A 13 134 235 195 195 10.99 13.1 0.33 6.2 A 13 134 235 17.9 0.995 15.8 0.33 10.9 A 31 102 1.332 2.35 17.9 0.995 16.8 0.33 10.9 A 31 102 1.332 2.35 2.17 0.39 14.3 A 31 102 1.332 2.35 2.17 0.39 14.3 A 31 102 102 1.03 10.3 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 </th <th>280 141 0.25 12.7 0.65 8.9 D 215 231 810 0.262 12.8 0.285 13.7 0.65 8.9 D 101 485 412 0.209 16.9 0.213 18.0 0.60 12.3 D 134 0.302 16.8 0.300 19.2 0.65 12.8 D 54 181 0.042 54.7 0.050 59.0 0.91 42.6 E</th> <th>276 189 603 0.281 15.7 0.313 15.7 0.72 12.3 D 164 52 221 0.201 30.8 0.236 32.7 0.87 24.9 D 22 64 50000 - 0.0000 - 1.000 - E 22 64 50000 - 0.0000 - 1.000 - E 23 64 50000 - 0.0000 - 1.000 - E 24 50000 - 0.0000 - 1.000 - E</th> <th>298 189 649 0.260 15.8 0.291 15.8 0.79 11.3 D</th> <th>n Fish Houts H1 c.v. H2 c.v. P0 c.v. R</th> <th></th>	280 141 0.25 12.7 0.65 8.9 D 215 231 810 0.262 12.8 0.285 13.7 0.65 8.9 D 101 485 412 0.209 16.9 0.213 18.0 0.60 12.3 D 134 0.302 16.8 0.300 19.2 0.65 12.8 D 54 181 0.042 54.7 0.050 59.0 0.91 42.6 E	276 189 603 0.281 15.7 0.313 15.7 0.72 12.3 D 164 52 221 0.201 30.8 0.236 32.7 0.87 24.9 D 22 64 50000 - 0.0000 - 1.000 - E 22 64 50000 - 0.0000 - 1.000 - E 23 64 50000 - 0.0000 - 1.000 - E 24 50000 - 0.0000 - 1.000 - E	298 189 649 0.260 15.8 0.291 15.8 0.79 11.3 D	n Fish Houts H1 c.v. H2 c.v. P0 c.v. R	
Wairopa Ch. Suu Wi	Sur Waiuku Ch. To Sur	Sum Sum Purakina Ch. Tota Sum	Papakura Ch. Tota	Manukau Harbour Manukau Hds Total Sumr	Ragian H. Total Sumar Sumar Vinto Vinto	Papanui Pt. Summ Summ Summ Winte	Crayfish Pt. 1014 Summ Kawhai H. Total Summ	Walkato Albatross Pt. Total Summ	Locality Time st	Table 14 continued
Wairopa Ch. Total Summer, weekday Winter	Summer, weekend Summer, weekday Waiuku Ch. Total Summer	Summer, weekend Summer, weekday Purakina Ch. Total Summer	Summer, weekday Winter Papakura Ch. Total	Manukau Harbour Manukau Hds Total Summer weekend	Ragian H. Total Summer Summer, weekend Summer, weekday Winter	Summer, weckend Papanui Pt. Total Summer, weekday Winter	Crayfish Pt. 10:40 Summer Sammer, weekend Kawhai H. Total Summer	Walkato Albetross Pt. Total Summer	Locality Time stratum	Table 14 continued
Summer, weekday 31 34 11. Wairopa Ch. Total 74 58 68 Summer 20 57 66 Winter 54 1 21	Summer, weekend op op <thop< th=""> op op</thop<>	Summer, weekend 316 274 1153 Summer, weekday 149 198 527 Purakina Ch. Total 171 178 655 Summer 141 175 357	Summer, weekday 43 72 190 Summer, weekday 43 72 190 Winter 95 2 323 Papakura Ch. Total 483 488 1741 650000 465 472 1680	Manukau Harbour Manukau Hda Total Summer unekend 155 187 760	Ragian H. Total 361 143 152. Summer 339 140 1188 Summer, weekend 244 98 851 Summer, weekday 95 42 337 Winter 222 9 737	Summer, weekend 20 6 48 Papanui Pr. Total 80 169 357 Summer, weekday 40 75 197 Winter 29 73 134	Crayfish Pt. 10tim Summer 51 171 200 Summer, weekend 35 138 143 Kawhai H. Tota Summer 31 10 80	Walkato Albatross Pt. Total 20 27 76 Summer 20 27 76	Locality Time stratum n Fish Hours	Table 14 continued
Summer, weekday 31 34 114 0.29 0.23 Wairopa Ch. Total 70 57 67 0.711 31.1 0.4 Wairopa Ch. Total 70 57 67 0.711 31.1 0.4 Wairopa Ch. Summer 20 57 67 0.711 31.1 0.4 Winter 54 1 217 0.005 1000 0.4	Summer, weekend Source, we	Summer, weekend 316 274 1153 0.248 10.1 0.2 Summer, weekday 149 198 527 0.395 9.4 0.3 Summer, weekday 171 178 665 0.274 10.9 0.2 Purakina Ch. Total 171 173 557 0.329 10.4 0.3 Summer 141 175 557 0.326 153 0.2	Summer, weekday 43 72 190 0.349 21.5 0.37 Summer, weekday 95 2 323 0.005 71.4 0.00 Winter 95 2 323 0.005 71.4 0.02 Papakura Ch. Total 483 488 1.741 0.295 7.1 0.28 Papakura Ch. Total 465 472 1.680 0.295 7.1 0.28	Manukau Harbour 293 261 1 274 0.158 12.5 0.20 Manukau Hds Total 198 2.59 950 0.231 1.20 0.27 Manukau Hds Total 198 2.59 950 0.231 1.20 0.27 Summer 155 1.87 760 0.199 14.3 0.24	Ragian H. Total 361 194 / 1942 300 194 / 1942 300 100 <th>Summer, weekend 20 6 48 0.146 36.7 0.120 Papanui Pt. Total 80 169 357 0.442 20.1 0.473 Summer, weekday 40 75 197 0.374 35.5 0.381 Summer, weekday 40 75 197 0.374 35.5 0.381 Winter 29 73 134 0.493 27.6 0.544 Winter 141 0.077</th> <th>Crayfish Pt. 1014 Summer 51 171 200 1.052 23.7 0.85 Summer, weekend 35 138 143 1.184 27.9 0.96: Xawhai H. Total 31 10 80 0.129 32.8 0.122 Summer 31 10 80 0.129 32.8 0.122</th> <th>Walkato 20 27 76 0.387 47.5 0.351 Albetross Pt. Total 20 27 76 0.387 47.5 0.351 Albetross Pt. Total 20 27 76 0.387 47.5 0.351 Albetross Pt. Total 20 27 76 0.387 47.5 0.351 Mathematical 500 27.7 76 0.387 47.5 0.351 Mathematical 500</th> <th>Locality Time stratum n Fish Hours H, c.v. H</th> <th>Table 14 continued</th>	Summer, weekend 20 6 48 0.146 36.7 0.120 Papanui Pt. Total 80 169 357 0.442 20.1 0.473 Summer, weekday 40 75 197 0.374 35.5 0.381 Summer, weekday 40 75 197 0.374 35.5 0.381 Winter 29 73 134 0.493 27.6 0.544 Winter 141 0.077	Crayfish Pt. 1014 Summer 51 171 200 1.052 23.7 0.85 Summer, weekend 35 138 143 1.184 27.9 0.96: Xawhai H. Total 31 10 80 0.129 32.8 0.122 Summer 31 10 80 0.129 32.8 0.122	Walkato 20 27 76 0.387 47.5 0.351 Albetross Pt. Total 20 27 76 0.387 47.5 0.351 Albetross Pt. Total 20 27 76 0.387 47.5 0.351 Albetross Pt. Total 20 27 76 0.387 47.5 0.351 Mathematical 500 27.7 76 0.387 47.5 0.351 Mathematical 500	Locality Time stratum n Fish Hours H, c.v. H	Table 14 continued
Summer 31 34 114 0.29 22.0 0.238 21.5 0.47 21.4 0.29 22.0 0.238 21.5 0.47 21.4 21.4 0.29 21.5 0.47 21.5 0.47 21.5 0.05 31.5 0.45 21.5 0.47 21.7 21.4 0.29 21.5 0.45 21.5	Summer, weekend Summer, weekday Summer, weekand Summer, we	Summer, weekend 316 274 1153 0248 101 0236 57 0.36 60 Summer, weekend 16 274 1153 0248 101 0236 57 0.36 61 Summer, weekday 149 198 527 0.395 9.4 0.375 8.7 0.34 8.1 Purakina Ch. Total 171 178 665 0.274 10.9 0.268 11.8 0.53 8.1 Purakina Ch. Total 141 175 557 0.329 10.4 0.314 11.7 0.44 7.5 Summer 141 175 557 0.329 10.4 0.314 11.7 0.44 7.5	Summer, weekday 43 72 190 0.349 21.5 0.379 24.3 0.31 130 Summer, weekday 95 2 323 0.005 71.4 0.006 70.5 0.98 70.0 Winter 95 2 323 0.005 71.4 0.006 70.5 0.98 70.0 Papakura Ch. Total 483 488 1741 0.295 7.1 0.281 6.7 0.51 4.7 Papakura Ch. Total 465 472 1680 0.295 7.1 0.281 6.7 0.51 4.7	Manukau Harbour 293 261 1 274 0.158 12.5 0.205 13.2 0.73 9.7 Manukau Hds Total 198 259 950 0.231 12.0 0.273 12.8 0.62 9.0 Manukau Hds Summer 198 259 950 0.231 12.0 0.273 12.8 0.62 9.0 Summer 198 155 187 760 0.199 14.3 0.266 15.1 0.65 10.8	Ragian H. Total 361 193 123 00000 118 10.10 118 10.11 118 11.11 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113	Summer, weckend 20 6 48 0.146 20.1 0.126 3.59 0.10 37.4 Papanui Pt. Total 80 169 357 0.442 20.1 0.473 21.2 0.64 14.8 Papanui Pt. Total 80 169 357 0.442 20.1 0.473 21.2 0.64 14.8 Summer 51 96 212 0.413 28.3 0.430 31.4 0.69 20.7 24.2 Summer, weekday 40 75 197 0.374 35.5 0.381 37.3 0.70 24.2 Winter 29 73 1.4 0.077 14.6 0.86 10.6	Crayfish Pt. 101an Summer 51 171 200 1.052 23.7 0.854 22.8 0.47 13.2 Summer, weekend 35 138 143 1.184 27.9 0.963 26.7 0.43 14.6 31 10 80 0.129 32.8 0.125 37.9 0.74 30.5 Kawhai H. Total Summer 31 10 80 0.129 32.8 0.125 37.9 0.74 30.5	Walkato 20 27 76 0.387 47.5 0.356 43.8 0.50 22.4 Albatross Pt. Total 20 27 76 0.387 47.5 0.356 43.8 0.50 22.4 Albatross Pt. Total 20 27 76 0.387 47.5 0.356 43.8 0.50 22.4 Summer 20 27 76 0.387 47.5 0.356 43.8 0.50 22.4 Summer 64 186 260 0.873 23.3 0.714 22.1 0.55 13.8	Locality Time stratum n Fish Hours H1 c.v. H2 c.v. p0 c.v.	Table 14 continued

.

í

Winter No No Addition Addition<	Tauranga Harbour 587 429 1640 0.241 10.3 0.262 10.3 0.75 7.1 D Total 511 420 144 0.272 10.3 0.262 10.3 0.75 7.1 D Summer 511 420 1414 0.272 10.3 0.297 10.4 0.72 7.1 D Summer, weekend 273 125 796 0.285 14.1 0.283 13.0 0.68 8.8 D Summer, weekend 273 195 618 0.238 15.3 0.316 16.7 0.76 11.7 D Summer, weekiday 726 9 226 0.030 55.0 0.040 59.3 0.93 43.2 E	Middle Bay of Plenty 704 1.498 2.556 0.636 5.9 0.586 5.3 0.42 1.2 B Total 704 471 1.150 1.691 0.768 6.7 0.680 6.0 0.38 3.6 B Summer. 471 1.50 1.691 0.768 6.7 0.680 6.0 0.38 3.6 B Summer. weekend 262 651 867 0.833 8.4 0.751 7.6 0.37 4.7 B Summer. weekday 209 499 824 0.687 11.1 0.605 9.7 0.39 5.9 B Winter 213 348 865 0.370 10.1 0.402 10.6 0.52 6.8 B	Northern Bay of Plenty Total Summer Summer Summer, weekend Summer, weekend Winter Winter Northern Bay of Plenty 819 1 330 2 690 0.581 7.8 0.459 5.0 0.45 3.7 Summer, weekend Summer, Summer, Summer	Eastern Gulf 732 1382 3600 8400 44 0771 670 624 21 A Total 379 1282 3600 8400 44 0771 670 524 30 B Summer 319 1267 1580 6710 53 0.801 5.9 475 30 A Summer, weekend 344 1206 1429 6410 54 0.844 61 814 30 A Summer, weekday 35 61 153 0533 182 0400 193 643 14% D Winter 353 1115 1488 0.934 646 6709 5.4 6734 2.4 A	Firth of Thames Z40 Sprint 1439 0.121 6.9 0.004 6.0 0.24 3.0 B Total Z40 Sprint 1439 0.121 6.9 0.604 6.0 0.24 3.0 B Summer 284 719 0.44 0.604 6.9 0.618 6.6 0.24 3.4 B Summer, weekend 204 531 880 0.654 871 0.603 1.5 0.23 3.8 B Summer, weekend 204 531 880 0.652 532 0.563 1.3 0.29 7.1 B Summer, weekend 204 215 232 183 0.562 13.5 0.29 7.1 B Summer, weekends 80 715 0.502 183 0.561 17.7 0.21 6.5 A Vinter 62 245 27.5 0.502 183 0.561 17.7 0.21 6.5 A	Summer, weekend 134 134 6004 0.452 3.6 0.442 3.1 0.46 1.9 C Summer, weekend 1.504 3.14 6.001 0563 3.8 0.532 3.4 0.36 1.9 C Summer, weekend 1.504 3.14 6.001 0.563 3.8 0.532 3.4 0.36 1.9 C Summer, weekend 1.504 1.004 0.6518 5.1 0.491 4.5 0.41 2.6 C Summer, weekend 1.931 1.188 6.912 4.507 5.6 0.621 5.3 0.26 2.7 B Summer, weekdad 1.931 1.188 6.912 4.507 5.6 0.621 5.3 0.53 4.5 D Winter 8.77 790 3.032 8.73 0.263 6.5 0.63 4.5 D	able 15 continued Arish Hours H1 c.v. H2 c.v. P0 c.v. R
			Summer, weekend 68 Summer, weekday 58	Summer 123 3 Summer, weckend 129 3 Summer, weckday 26 Dargaville 126 3 Summer 126 3	Summer 918 1 m Summer, weekend 630 66 Summer, weekday 288 4 Winter 209 4 Kaipara Harbour 155 3	Summer 200 25 Summer, weekend 329 25 Summer, weekday 176 16 Winter 268 5 Total 1127 112	<i>Table 15</i> continued Time stratum n Fis Walkato 773 55 Total 505 45
(())			161	55 28	2222		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

۰

ť

(

..

Hours

H,

ç,

 H_2

C.V.

Po

C.Y.

R

2 753 1 814 1 146 939

0.198 0.263 0.256 0.275 0.275

11.9 13.0 17.3 19.3 25.8

0.201 0.252 0.253 0.250 0.103

11.5 16.5 19.8

0.73 0.74 0.91

7.1 9.3 11.8 19.9

3000

4 305 3 561 2 489 1 072 743

0.286 0.343 0.418 0.418

6.9 10.1 7.3

0.262 0.310 0.267 0.409 0.032

5.4 5.3 7.8 33.9

0.59 0.51 0.38 0.94

3.6 3.4 4.6 28.0

80000

3 X & &

0.648 0.648 0.727 0.255

12.1 12.1 12.5 33.3

0.573 0.573 0.643 0.131

12.1 12.1 12.1

0.35 0.30 0.58

5.9 5.8 22.9

391 190

0.962 0.962 0.698 1.273

12.2 12.2 14.8 17.2

0.908 0.802 1.020

11.0 11.0 14.4

0.32 0.40 0.22

21 58 7.1

> # > >

-
North Cape to Cape Brett 1991 292 182 1994 34 105 1996 279 479 Cape Brett to Cape 1991 249 1994 134 1996 225 Whangarei Harbon 1991 230 1996 117 1996 117 Western Gulf 1991 606 1994 722 1996 159 *Table 16*: Comparison by year of snapper harvest rates (fish per hour) by baited line or Jigging where snapper or "general fish" was the larget by diary zone during March and April weekends. See Table 2 for an explanation of the column headings. The c.v.s are given as pertentages Inner Gulf 1991 3178 1994 3509 1996 498 Firth of Thames 1996 53 Bay of 1 1991 1994 1996 Northern Bay of P 1991 733 1994 579 1996 288 Year Middle Bay of Plenty 1991 220 4 1996 85 3 Eastern Gulf 1991 Eastern Bay of Plenty 1991 569 1.4 1994 416 1.4(1996 382 7) 1996 Tauranga 1991 9661 1994 Harbour 1 226 417 123 191 516 155 94 9 r Plenty 917 790 544 5 062 10 229 Rodne 325 395 1 061 375 Fish 1 150 1419 395 314 321 324 747 247 2615 161 1 408 715 308 ğ \$ 1416 836 2 Hours 11 552 13 585 2 054 2 144 2 456 409 1 403 1 594 660 1 039 120 850 842 423 2 152 898 417 892 4 815 1 462 407 866 669 1 353 235 1 631 1 464 1 135 295 0.835 0.321 0.188 695.0 0.450 S A 0.36 0.360 0.921 0.716 0,440 0.642 0.853 0.512 0.410 0.519 0.540 0.868 0.179 26.8 14.9 155 12.4 9.9 9.9 9.4 11.0 <u>*</u> 12.3 12.5 5.2 2.9 9.7 4.8 21.1 11.0 8.1 8.4 8.6 S 0.282 200 0.362 0.568 0.443 0.640 0.373 0.348 0.438 0.604 0.578 0.426 0.465 0.545 0.873 0.685 0.560 0.753 1.007 0.521 0.543 0.572 0.175 0.868 0.962 0.630 10.6 9.6 10.1 12.8 14.2 11.7 6.4 3 Ş 8.4 5.9 53 30 9.7 7.5 22 10.6 4.9 7.86 0.70 0.58 0.24 0.59 0.44 0.02 0.5 0.50 0.33 <u>0</u> Р 0.11 0.19 0.51 0.34 0.61 0.48 0.21 0.69 0.36 0.44 8% 44 EV 13 68 3 0.8 2.0 2 5 446 5 5.6 13.5 5 1 1 1 1 1 1 Ś 00 × 00 8 n ¤ O ≻ 2

Table 16 --- continued

9661	1994	1661	Dargaville	1996	1994	1991	Kaipara F	9661	1994	1991	Manukau	1996	1994	1661	Walkato	Year
9 6	92 2	\$		62	8	320	Iarbour	381	586	735	Harbour	143	151	561		3
811	290	8		169	327	742		463	1 149	Š		71	289	.158	•	Fish
117	265	97		282	337	1 358		1610	2 075	2 289		507	571	2 097		Hours
0.915	1.016	1.174		0.679	0.922	0.515		0.292	0.635	0.436		0.150	0.544	0.078		H _t
16.9	13.3	22.1		11.2	14.4	3	•	8.3	11.1	9.7		23.5	15.5	14.7		C. V.
1,006	1.095	680.1		0.600	0.969	0.546		0.288	0.554	0.396		0.140	0.506	0.075		H ₂
20.4	15.5	20.2		11.0	14.0	8.6	•	8.2	7.1	9.2	•	25.2	14.3	15.6		CV.
0.28	0.32	0.42		0.24	0.41	500	2	15'0	0.53	0.71		0.77	0.57	0.87		ра
10.0	22		5	7.2	1 01 1 1	, .	•	5.2	4		•	15.3	9.4	10.9		C.V.
,	• 7	• >	•	. 4	• >	Ċ	3	D		n C)	н	n		I	R

c.v.s progiven as percentages Yable 17: Comparison by year of snapper harvest rates (fish per hour) by baited line or **Jigging** where snapper or "general fish" was the target in harbours which are not separate diary zons during March and April weekends. See Table 2 for an explanation of the column headings. The

z,

н.

C.V.

20

Ç,

7

	\$	27	\mathcal{V}	_
1994 1995			1991 1991	Ĩ.
	arbour		A B CON	2
\sum	ω Λ	$\left(\left(\right) \right)$		Fish
	1/			Ŧ
\$2.5 S	ێؚڒ	<i>ZZ</i>	80 80	ouri
0.161	Z	0.285	0.055 0.143	H,
	23.2	39.4 51.6	39.9 49.0	C. ¥.
0.060	0.054	0.296 0.028	0.083 0.099	н,
21.2 36.8 23.4	20.8	30.5 52.3	42.3 55.5	C.V.
0.82 0.76 0.80	0.88	0.84 0.95	0.90 0.82	10
18.9 27.6 17.9	18.7	22.2 48.6	35.9 45.2	5
ងដោយ	B	03		;
	Base Description Descrinter Description D	Harman Jan 633 October 23.2 0.054 20.8 0.88 18.7 E Harman Jan 633 October 23.2 0.054 20.8 0.88 18.7 E 1991 Jan 123 0.161 Jan 0.166 36.3 0.76 27.6 E 1996 Jan 123 0.161 Jan 0.166 36.3 0.76 17.6 E 1996 Jan 193 Jan 1.107 Jan 0.098 23.4 0.80 17.9 E	Only Introduct Au 0.285 39.4 0.296 30.5 0.84 22.2 D Mode 10 Au Au 0.285 39.4 0.296 30.5 0.84 22.2 D Mode 10 Au Au 0.033 51.6 0.028 52.3 0.95 48.6 B Mode 123 Au 639 Oxoe 23.2 0.054 20.8 0.83 18.7 E Mode Au Au Au Au 0.060 21.2 0.83 18.7 E Mode Au Au Au 0.060 21.2 0.83 18.7 E 1996 Au Au 0.107 Au 0.060 21.2 0.83 17.5 B 1996 Au Au 0.107 Au 0.068 23.4 0.80 17.9 B	Winnerschaftsfahov 22 265 0.035 39.9 0.083 42.3 0.90 35.9 E 1991 1990 199 2 265 0.035 39.9 0.083 42.3 0.90 35.5 0.82 45.2 E 000 100 10 20 0.285 39.4 0.296 30.5 0.84 22.2 D 100 10 10 20 0.285 39.4 0.296 30.5 0.84 22.2 D 100 10 10 10 0.003 51.6 0.028 32.3 0.95 48.6 E 100 10 10 10 12.2 0.054 20.8 0.88 18.7 E 1996 123 0.161 12.4 0.098 21.4 0.83 17.6 E 1996 123 0.161 12.4 0.098 21.4 0.80 17.9 E 1996 123

Inner Gulf Total Summer, weekend Summer, weekend Summer, weekday Winter	Westera Gulf Total Summer Summer, weekend Summer, weekday Winter	Barrier Islands Total Sunvuer Summer, weekday	Whangarei Harbour Total Summer Summer, weekend Summer, weekday Winter	Cape Brett to Cape R Total Summer Summer, weekend Summer, weekday Winter	Bay of Islands Total Summer Summer, weekend Summer, weekday Winter	iarth Cape to Cape Br Total Summer Summer, weekend Summer, weekday Winter	Able 18: Kahawal har (AH 1 and time stratu (gging with snapper or eadings, The c.v.s are) Time stratum
2 346 1 504 1 012 492 842	415 359 140 56	52 52	307 281 192 26	odney 599 541 367 174 58	903 429 207	E E E E	n in 1990 "general
701 326 375	12 12 23	30 29	31 31 31 31 31	170 2 143 1 27 1	229 229		H
9 004 6 001 4 089 1 912 3 003	1 270 1 107 642 466 162	345 291 287	306 0 88 0	285 989 393 296 0			hour the
0.074 0.050 0.036 0.116	0.027 0.024 0.024 0.023	0.076 0.097 0.091	0.067 0.041 0.045 0.034	.086 .099 .147		33255	H. See
6.8 8.6 9.7 18.4	27.2 26.6 36.1 37.6 75.0	37.1 36.6 39.5	18.6 20.7 23.6 43.3	31.7 31.7 0			napper hery wa Table 2
0.078 0.063 0.063 0.125	0.030 0.024 0.023 0.026 0.068	0.087 0.103 0.101	0.068 0.043 0.050 0.029 0.352	99 99 99 99 99 99 99 99 99 99 99 99 99			bycatch s define for an e
6.2 8.5 8.7	28.3 25.6 35.5 75.4	41.1 40.8 42.1	17.7 19.4 22.2 39.2 29.3	A A A A A A A A A A A A A A A A A A A	20202		fishery d as usi xplanati
0.84 0.87 0.91 0.78	0.95 0.95 0.94 0.95	0.87	0.58		EECE &	* 175 1780 1 179	by diar ng baite ion of th
6.8 6.5	21.3 23.0 34.3 56.2	31.1 30.4 32.5	E SEE			6.3 7.6 14.9	y zone i d lines q le colum
	ដ ជា ជា ជា ជា					ti ti ti ti ti	~ 5¥5

Table 18 --- continued

ता व	ពេលជា	ជ ជា ជា ជា ជា			\sim			
		_		(\bigcirc)	>			
		C	\sim					
				\searrow				
	<		\square				•	
		\gg		A S S S T M	N Sa Sa Nor	East To Su Wi	Firth Tot Sun Sun Wii	Time
	$\langle \rangle \rangle$	This Summer Summer	oul unmer	ddle Bay otal ummer ummer, /inter	thern B (al mmer, v inter	ern Gul al nmer nmer, w nmer, w	al al nmer nmer, wi nmer, wi nmer, wi	stratum
	ÿ.	C	Harbou weekda: weekda:	y of Pler weekend weekday	ay of Pi reckend veekday	f cekend cekday	mes sekend sekday	
\searrow			ir 58	47 22 22 22 23 22 22	819 619 174 200	732 379 344 353	346 284 204 62	æ
	\sim	∕ <u>√8858</u> 9				5	N W W O V	Fis
$\langle \langle \rangle$	$\langle \rangle \vee$	790 386	5 8882 E	6.8.0.8.4	\$2328 \$2	 2072	40000	h H
\square	\sim	1 800 1 892 1 822	1 640 1 414 796 618 226	2 556 1 691 867 824 824	945 945 745	070 582 429 438	439 164 284 275	Sunc
\bigcirc	/ .	0.306	0.084 0.065 0.089 0.210 0.210	0.096 0.102 0.108 0.095 0.084	0.067 0.072 0.080 0.080 0.051 0.051	0.045 0.047 0.025 0.093	0.070 0.119 0.110	Н,
		9 E 8 6	18.7 18.4 22.6 29.8	10.3 11.6 18.3 21.6	13.9 15.9 35.1 28.0	14.7 23.0 24.1 48.8 18.8	18.0 23.3 23.4 37.6 23.3	C.V.
		5 0.28 1 0.277 3 0.30 7 0.21	0.088 0.065 0.082 0.082 0.234	0.097 0.111 0.119 0.071	0.059 0.057 0.063 0.040	0.064 0.037 0.038 0.033	0.065 0.036 0.036 0.123 0.098	H ₂
		9.00	23.2 17.3 29.9 57.5	10.4 12.1 15.2 20.3	14.1 14.8 17.2 28.4 31.2	13.7 18.4 19.6 51.3 17.8	18.2 23.9 22.1 41.0 21.9	C.V.
		0.5	0.89	0.81 0.79 0.78 0.84	0.89 0.89 0.91 0.88	0.85 0.89 0.81	0.85 0.88 0.88 0.89 0.88	Ра
		2221	10.8 20.6	7.7 8.9 13.1 13.2	9.8 11.2 12.6 23.8 20.1	8.9 15.0 15.8 11.0	12.9 16.4 19.6 19.9	C.V.
		000	ជងតត ច ចច្				ដា ជា ជា ជា ជា	70

ĺ

	Dargaville Total Summer Summer, weekend Summer, weekday	Kaipara Harbour Total Summer Summer, weekend Summer, weekday	Total Summer Summer, weekend Summer, weekday Winter	Summer, weekend Summer, weekday Winter Winter	Waikato Total	Table 18 continued Time stratum
	126 126 58	155 155 129 26	1 127 918 630 288 209	505 329 176 268	773	э .
	11 S S S	· 84 24	971 638 464 174 333	461 224 339	800	Fish
	5033	57665	1 072 743 743		2753	Hours
	1 0.151 1 0.151 1 0.213 0 0.079	0.132 0.091 0.336	0.315 0.287 0.333 0.188 0.435	0.204 0.363 0.396) I.
	23.9 23.9 29.6 29.7	18.4 18.4 19.2 32.4	21.9 36.6 12.2 10.6		he-	Se .
	0.159 0.159 0.254 0.058	0.126 0.126 0.105 0.262	0.179 0.186 0.162 0.448			3
	25.4 25.4 29.8 28.0	16.9 16.9 21.4 25.2			Ŕ	С.¥.
	0.76 0.76 0.72 0.81	0.72			Ľ	\rightarrow
	15.9 19.5 27.1	I SALA				5 0
	ឆ្ ¹ ធបធ ្			e Bare	90	~
			SX ()	\rightarrow		
	All -	r d	S.			
\bigcirc	$\langle \rangle \rangle^*$	AC	シ			
		$\langle \mathcal{D} \rangle$				
			_			
	Summer, W Winter Winter Town	Winter Winter Total Summer Summer we	Winter East Northlan Total Summer, wet	lay of Plenty Total Summer Summer, wee Summer, wee	lime stratum	<i>able 1</i> 9: Kah mestratum ir napper or "ge he c.v.s are e
	sekday	f .	nd okend	kend kday		awai hu 1 1996. Ineral f
	2 18 1313	491 3 839 2 526 1 779	2 622 2 622 1 427 704	3 511 2 497 1 596	· .	The ma d as per
	121 121 124 124	323 1 030 479 358	1 23 1 908 306	1 129 1 180 769 411	Fish	pper ta pper ta the targ
	- 281 - 281 - 492 - 492	1 918 9 854 7 040	9 369 7 451 4 893 2 558	11 512 7 851 4 931 2 919	Hours	s rget fish rget. See
	4 0.042 8 0.107 1 0.289 1 0.259 99 0.26	0.194 0.067 0.048	0.142 0.130 0.135 0.119	0.163 0.160 0.165 0.152 0.170	Н,	our) in t ery was Table 2 i
	2512 89	5.8 7.5	5.6 6.6 7.8	8 9 6 5 5 6	C.Y.	he snap defined for an e
	0.112	0.070	0.131 0.122 0.123	0.150 0.150 0.156 0.141 0.141	н,	per bycat as using b xplanation
	5.2 7.6	5.3 7.2 8.1	5.6 7.2 13.5	9.4 9.1 9.4	C.V.	ch fishe aited lit n of the
	0.69	0.88	0.77	0.77 0.77 0.76 0.75	ţ,	es or ju column
2	3.9 3.9 4.9	3.9 5.6 11.6	3.6 4.1 7.9	3.1 6.5 5.4	C.V.	egion m Iging wi
	a 5000	न न न न	ង ដា ដា ដា ដា	ल ल ल ल म म	R	7 5 2

(

	KAH 9 1991 1994	KAH 1 1991 1994 1996	Year	<i>Table 23:</i> (method wi Table 2 for	West coast Total Summer, V Summer, V Winter	Hauraki G Total Summer	East North Total Summer Summer, v Summer, v	Summer, v Winter	Bay of Plen Total Summer	Time stratu	<i>Table 22</i> : I Sahawai as of the colui
	119 26	388 206 146	3	Comparis th kabaw	weekend	ulf	land weekend veekday	veekday	lty	3	Kahawai the targe nn headii
	129 48	738 245 165	Fish	on of kat ai as the nation of	49 42	50 34	189 178 124 54	53 28	175 94	5	harvest i st species igs. The
	338 61	594 381 197	Hours	awai hau target s [the colu	60 53 8 ¹ 43	75 47	190 129 46	28	221 191	Fish	nates (fis)) by regi
	0.372	1.261 1.431	Ę	mn he	<u>5855</u>	97 72	207 143 51	8 2	284	Hours	on and
	19.7 32.2	9.2 20.2 15.5	с.у.	rtes (fish by Fishs udings. T	1.556 2.382 2.109 0.593	0.879 0.802	1.381 1.355 1.476 1.078	1.658 0.633		12	our) in t time stri red as pei
	0.381 0.783	1.243 0.643 0.839	H ₂	per hou tock du he c. v. s	35.8 42.4 61.7 35.0	19.8 24.6	14.0 14.8 17.2 28.3	36.3 38.6	a to be	\mathcal{Y}	he targe atum in rcentage
	23.2 31.6	8.4 14.7 12.5	C.V.	ir) in the l ring Marc	0.682 0.785 0.570 0.578	0.774	0.916			Н,	rt kahawa 1996, Sce 13
	0.69 0.40	0.39 0.44	þđ	cahawa in and ucd as	18.9 24.5 31.9 30.1	28.8 36.0		ŠŤ.		C.Y.	f fisher Table
	= =			ii targe April v percen	0.55 0.47 0.64	55	Visit !!) 0.9 73 9	R C		y (any 2 for ar
	1.2	ئ <u>ہ</u> نے ت		t fisher reekene tages	17.8					C.¥.	metho 1 explai
	20	>>>	7	y (any 14. See	0 >1 > x	X) >>>,		she s	R	d with nation
			∕.								
	9661		X		Table 2 (mixed for an o Year		9661	1994	Tarakii 1991	Year	Table 2 (baited heading
	or X				S: Comy method, explanat	1	QMA I	QMA 1	QMA I	Area	4: Com lines or ps. The c
Winter	Sum State	Winter Sommer		Non Town Town	mainly by ion of the h Time		Total Summer Winter	Total Summer Winter	Total Summer Winter	Time	parison by jigging vi
			$\langle \rangle$		ycar of agline a cadings	•	317 170 147	136 112 24	156 120 36	9	year of th taral ressed s
and the second s			✓	302 514	narvest nd set n The c. Fish		1 346 603 743	8 881 961	80 80	Fish	l harves dhi the 15 perces
$\int \nabla \nabla \mathbf{r}$	=		19	377 130 130	rates (net with 7.5 are Hourt		1 085 544 540	53 33 53 33	558 414 144	Hours	it rates target nlages
		1.25	0.528	0.788 0.353 1.166 0.343 0.107	express H, red gu		1.351 1.203 1.521	0,425 0,492 0,109	0.777 0.862 0.490	н,	(lish p species
	× ≥= 1 8	20215	28.0	372 372	nour) rnard ; ;d as pe c.v.		7.8 9.7 12.0	16.5 16.7	15.5 17.5 26.6	C.V.	er hou:). See I
	→ 0.13 → 0.13 → 0.13	7 1.030 7 1.030	0.46	0.415	ior the i arcgnta, H ₃		1.241 1.108 1.376	0.446	0.718 0.774 0.556	H ₁	r) for 1 Fable 2
	7 37.1 7 37.1 7 28.8	69.0 4 22.2 19.2	3 30.5 7 32.8	5 15.8 5 27.3 5 23.1 39.8 25.1	Bra C.v.		9.2 14.4	16.8 17.1 64.7	15.5 18.2 26.2	C.V.	for an
. 0.5	0000	0.3	0.63	0.46 0.45 0.67 0.53	po po		0.32 0.38 0.27	0.62 0.58 0.83	0.59 0.57 0.64	Ра	kihi tar explani
~ -				· · · · · ·							e

.

;

i

Summer 431 63 737 1996 QMA I Total 512 37 2981 0.016 25.5 0.012 21.8 0.95 19.1 Summer 519 37 2973 0.016 25.5 0.012 21.8 0.95 19.1	Albacore tuna 1991 QMA 1 Total 618 176 2.679 0.072 17.2 0.066 15.6 0.86 10.1 1991 QMA 1 Summer 570 176 2.570 0.078 17.1 0.068 15.5 0.85 10.1 1994 QMA 1 Total 470 85 1.645 0.054 19.4 0.052 17.4 0.89 13.1 1994 QMA 1 Total 470 85 1.645 0.054 19.4 0.053 17.4 0.88 13.0	Winter 20 37 12 0.304 10.9 0.6 7.0 1994 QMA1 Total 303 384 1362 0.562 12.0 0.304 10.9 0.6 7.0 Summer 293 366 1240 0.560 12.5 0.295 11.3 0.6 7.2 1996 QMA1 Total 634 382 3.239 0.175 11.7 0.117 10.8 0.76 7.2 1996 QMA1 Total 633 378 3.238 0.173 11.8 0.117 10.9 0.76 7.2	Year Area Time n Fish Hours H1 EX Fish Hours H1 EX Fish Hours H1 EX Fish Hours H1 EX Fish Hours H1 EX Fish Hours H1 EX Fish Hours H1 EX Fish Hours H1 EX H1 H1 EX H1 H1 EX H1 H1	Table 27: Comparison by year of harvest rates (fish per hour) for the fulliple luna and altabayy trol fisheries. See Table 2 for an explanation of the headings. Table 2 for an explanation of the headings. Table 2 for an explanation of the headings. Table 2 for the full fisheries are expressed as percentaget	QMA 9 Total 92 403 302 2.693 117.1 1408 Summer 49 318 170 2.163 117.1 1408 152 0.22 1.7 Grey mullet 43 373 132 469 14.2 2.889 15.5 0.000 4.9 1996 QMA 9 Total 36 195 169 A57 A510 14.7 18.2 0.14 6.1	Flatfish 1994 OMA 1 Total 21 1091 223 0.41 14.6 1994 OMA 9 Total 21 510 18 1.21 0.29 15.2 0.29 8.1 1994 OMA 9 Total 210 189 1.21 2.00 15.2 0.29 8.1 1996 OMA 1 Total 24 300 127 2.405 15.3 2.117 1.71 0.32 10.3 1996 OMA 1 Total 34 619 63 1.349 22.4 0.43 14.6 1996 OMA 1 Total 34 619 13.49 22.4 0.63 30.7 0.43 14.6 1996 OMA 1 Total 34 619 13.49 22.4 0.59 20.4 30.7 0.43 14.6	expressed as percentages H_1 c.v. H_2 c.v. p_0 c.v. Year Area Time n Fish Hours H_1 c.v. H_2 c.v. p_0 c.v.	Table 26; Comparison by yearlot harvoit rates (fish per hour) for the flatfish (set and drag net) Table 26; Comparison by yearlot harvoit rates (fish per hour) for the headings. The c.v.s are
	Granding Contraction 1000	Scalions diving Total 40 g 1994 Coromandel Total 24 2 1996 Commandel Total 24 1 1996 Commandel Total 109 21 1996 Commandel Total 109 21	Scallops—dredging 1994 WC Harbours Total 120 160 "- 1996 Coromandel Total 41 6 WC Harbours Total 122 18	Rock tobater potting 1996 CRA 2 Total 90 46 Summer 52 17 Winter 38 28	1996 CRA 1 Total 286 624 Summer 246 532 CRA 2 Total 364 1020 Summer 283 720 Vinter 81 222 CRA 9 Total 28 122 CRA 9 Total 28 121	Winter 48 84 CRA 2 Total 232 399 Winter 152 229 170 Winter 80 170 170 CRA 9 Total 48 117 CRA 9 Summer 18 59 Winter 30 58	Year Area Time a Fish Rock.lobster diving 1994 CRA 1 Total 127 211 1994 CRA 1 Summer 79 127	Table 28: Comparison by year of harvest rate green mussel target fisheriet. See Table 2 fo expressed as percentages. WC harbours for ser
	679 95 56.9 12.2 38.9 8.7 0.06 2 608 84 65.1 6.0 54.7 7.9 0.09	576 38 24.03 12.4 17.78 11.2 0.10 5. 510 18 36.57 14.3 27.95 17.4 0.12 7. 510 18 36.57 14.3 27.95 17.4 0.12 7. 363 81 27.56 15.5 16.81 10.6 0.11 4 303 81 27.56 15.5 16.81 10.6 0.11 4 304 118 26.593 8.6 17.21 11.2 0.11 3 304 118 26.593 8.6 17.21 11.2 0.11 3 304 4.0 12.25 19.9 8.21 15.1 0.19 10	62 123 18.39 9.2 13.47 8.8 0.23 3X 89 32 29.53 9.9 21.70 12.4 0.07 4.9 33 224 13.14 13.0 8.17 10.6 0.19 4.9	0 1053 0.510 15.7 0.437 15.4 0.23 5.8 44 634 0.353 17.0 0.274 14.8 0.27 8.4 16 419 0.724 22.9 0.683 22.2 0.18 7.7	398 2.381 9.4 1.567 10.6 0.34 4.5 353 2.257 10.8 1.508 1.03 0.34 4.5 46 3.142 17.7 2.018 2.03 1.04 0.30 10.4 46 3.2576 7.2 1.691 6.4 0.27 3.2 430 2.648 7.2 1.846 7.2 0.28 3.7 430 2.648 7.2 1.846 7.2 0.28 3.7 133 2.324 2.13 1.306 1.33 0.26 6.6 137 2.324 2.13 1.306 1.5.7 0.11 6.5 133 15 8.652 8.5 7.533 16.6 0.04 4.4	34 1.350 13.0 1.485 8.7 0.44 5.8 269 2.305 13.0 1.485 8.7 0.44 5.8 175 1.733 13.2 1.307 11.4 0.49 7.9 94 3.391 2.19 1.817 13.8 0.35 8.2 47 3.191 12.7 2.468 14.5 0.19 6.9 47 3.191 12.7 2.468 1.35 0.19 6.9 47 3.191 18.0 2.525 2.31 0.06 5.7 23 4.026 18.0 2.525 23.1 0.06 5.7 24 2.690 17.3 2.413 15.2 0.27 11.0	House 41 41 41 41 41 41 41 41 41 41 41 41 41	s (fish per hour) for the rock lobster, scallop, and or an explanation of the headings. The c.v.s are allops are the Manukau and Kaipara Harbours

.

.

	1996 QMA	1994 QMA	John dory 1991 QMA	1996 QMA 1	1994 QMA 1	QMA 9	Diue maomao 1991 QMA I	1996 QMA 1	QMA 9	1994 QMA I	QMA 9	Blue cod 1991 OMA 1	Year Area	target species). S percentages	Table 29: Compa essentially as by		
	, I Total Summer Winter	1 Total Summer Winter	1 Total Summer Winter	Total Summer Winter	Total Summet Winter	Summer Winter Total	Total	Total Summer Winter Total	Winter Total	Total Summer	Summer Winter Total	Total	Time	See Table 2	rison by year catch of the r		
	10 552 7 539 3 013	18 809 13 770 5 039	16 593 13 666 2 927	10 552 7 539 3 013	18 809 1 13 770 1 5 039	2 927 2 749	16 593 1 3	10 552 7 539 3 013 2 265	5 039 25 2 522 2	18 809 4 9 13 770 2 3	13 666 16 2 927 8 2 749 1		n Fis	for an explu	r of harvest mapper fish		
	267 174 93	345 191 154	179 111 68	878 87	5258	222	8	8285	- -	6 6	*****	ບຸ		Inatio	rates (bry (b		
	37 701 0.0 26 431 0.0 11 270 0.0	66 100 0.0 49 144 0.0 16 956 0.0	56 411 0.0 46 359 0.0 10 052 0.0	37 701 0.01 26 431 0.02 11 270 0.00	66 100 0.02 49 144 0.02 16 956 0.00	10 052 0.030 10 003 0.000	56411 0.024	17 701 0.004 16 431 0.004 11 270 0.004 8 417 0.003	6 956 0.015 8 664 0.003	6 100 0.007 9 144 0.005	6 359 0.004 0 052 0.008 0 003 0.001	6 411 0.004	iours H ₂		al and the set		
	8 9 9 9	<u>888</u>	998 		50-	20. 55.	~ ~ ~ ~	23 26 25 15	28.	60	67.1	5.5				, ,	
	7.3 8.9 12.5	8.1 11.3	8.3 13.2	3.8	6225	22		0000	, va , oʻç	. 6 9			$\langle \rangle$	>	ing wi		
	0.98 0.97	0.98 0.99 0.98	0.99 0.99 0.98	0.98 96'0	0.97 0.98 0.98	88	80. 80.	8888 8	3 3 2	388			<u>کْرْ</u>				
	6.6 8.1 11.3	5.8 9.0	7.8 10.0 12.6	6.8 7.5 16.6	4.6 4.9 12,6	9.7 40.8	4.9 5.6	9.7 11.6 14.9	· · · ·			シ		$\sum_{i=1}^{n}$		\gg	
						\bigcirc				$\sqrt{(0)}$			>		stible stable	7	
	9661	1994	Koheru 1991	AND S			\bigcirc	v e	(996 Q)	Q	994 QN	Ģ	29 L	ck mack	ar Are	ble 29	
	QMA	QMA QMA	QMX~		~~~~ <			MA 9	Â.	4A 9	I AN	6 V J	5	22.		contin	
	1 Total Summe	9 Total	New Summer	Total	and the second		Total Summer Winter	Winter Total Summer	Total Summer	Total Summer	Total Summer Winter	Total Summer	Summer Winter	Total	Time	nued.	
	226					2 749	16 593 13 666 2 927	2 265 1 758	10 552	2 522 1 998	18 809 13 770 5 039	2749 2422	13 666 2 927	16 593	3		
		Le la	~~~<			228 2	Q 2 4	8 7	1 500	159	4 604 626	54	1 246	1 442	Pish		
				- 6-2 		5 2 5	545	0.00	- 23 3	0.00	5 3 8	800	55	56 4	Но		
\sim			5577 8452 8452	8417	664	5 1003	052 052	634 0	431 0	551 0	× 18	42 0.	550	Ē 0	UES		
()	0.01	a a a	0.024	0.007	0.002	0.004		1010	049	.023	034	88	(<u>9</u> 8	026	H,		
· J	0 1 0	$\langle \rangle$	V 72.26	8.3 24.4 22.5	23.5	7.3 7.5	14.2	19 18	6.7 7.4 14.6	14.0 15.1	5015	21.1 22.7	20.3	7.9	C.V.		
\bigvee	· · · ·	282	0.9	0.92	0.99	860	0.98	0.98	0.95 0.95	0.96	0.90 0.90 0.91	0.99	0.98	0.97	Po		
	98 6.7 98 7.4 99 15.5	9 9 22.9	7 4.4 7 4.4 8 12.8 8 13.9	7.8 21.7	18.5 17.3	6.4 6.8	13.5	16.1 17.2	9.4 9.9 8	10.9	164 Z Z Z	18.1	12.0	ί α	C.Y.		

ĺ

.

.

,

1994 QMA 1 Total Winter 18 809 1470 66 100 0.0022 4.5 0.995 4.095 3.095 4.095 3.095 4.095 3.095	Trevally 1991 QMA 1 Total Summer 16 593 1 117 1366 56 411 0.020 783 4 6339 0.017 5.4 0.96 5.4 0.96 6.3 7.1 QMA 9 Total 2 927 334 10 052 0.033 10.2 0.94 297 10 003 0.030 8.6 0.93 7.1 7.4 QMA 9 Total 2 749 297 10 003 0.030 8.6 0.93 7.4 9.4 1.962 0.023 7.2 0.94 7.1 Winter 2 422 263 8.642 0.030 8.0 0.93 7.4 9.4 1.962 0.025 7.1 0.94 7.3	1996 QMA1 Total 10.552 144 37.701 0.004 154 0.957 138 Summer 7.539 97 26.431 0.004 154 0.957 138 Winter 3.013 47 11.270 0.004 26.8 0.957 124.3 QMA9 Total 2.265 39 8.417 0.005 65.4 0.967 124.3	1994 QMA 1 Total 18809 324 66 100 douge NA 0.99 8.7 Summer 13770 269 49 144 and 465 0.99 96 Winer 5039 55 16 956 0000 77.7 0.50 18.8	Red snapper 1991 QMA1 Total 16 593 234 56 411 0004 150 959 /06 Summer 13 666 129 46 349 (0.003 16.6 139) /143 Winter 2 927 122 10 022 0013 25.4 039 /143	1996 QMA 1 Total 10 500	1994 QMA I Total 18.800 277 66.100 4.004 13.1 1.00 10.5 Sumper 13.1 10 254 69.44 0.003 13.4 0.99 10.9 . Winter 3.039 18 16.956 0.001 38.8 1.00 37.8	Pink maomao 1991 QMA 1 Total 16 593 363 66411 0.006 16.3 0.99 10.4 Summer 13 666 169 46-539 0.004 16.2 1.00 12.7 Winter 2 927 154 10.052 0.015 29.1 0.99 18.2	Table 29continued	
	skipjack. Data from the year of the owner terry to the length relation.	Skipjack tuna Katsawonus pelants 0.0017 Skipjack tuna Katsawonus pelants 0.0017 I Several species of flounder, sole, and turbot are included in this grouping I Several species of flounder, sole, and turbot are included inom data astracted from the observer data Veight-length relations for the tunas were derived from data astracted from the observer data Lynda Griggs. There are over 15 000 sets of green weight and length for albacore but only Lynda Griggs. There are over 15 000 sets of green weight and length for albacore to determine the	TRB (all) 110 110 110 110 110 110 110 110 110 110	ALIA (MA) Shapper SNA (all) Tarabibi TAR (all) Tarabibi <i>macropterus</i> Deudocaraux 0.0160 3.064 James (1984) Deudocaraux 0.0160 3.064 James (1984)	GUR 7 Observation 0.0053 3.190 Stevenson (1998) JDO (all) John dory Zeus faber 0.0364 2.900 Hore (1982) JDO (all) John dory Zeus faber 0.1024 2.902 Bradford (1998a) KAH 1&9 Kahawai Arripis trutta 0.1024 2.845 Annala et al. (1998) KAH 1&9 Kingfish Seriola Ialandi 0.0246 2.845 Annala et al. (1998)	GMU (all) Grey mullet Mugil cephatus 0.0360 2.754 Annaia et al. (1998) FLA (all) Flatfish ¹ 0.0380 2.660 Annaia et al. (1998) FLA (all) Flatfish ¹ Chelidonichthys 0.0100 2.990 Elder (1976) GUR 1 Rod gurnard Chelidonichthys 0.0100 2.990 Elder (1976)	BAR (all) Barracouta Thyrsites etun 0.0075 2.900 Hurst & Bagley (1994) BCO (all) Blue cod Parapercis colias 0.0102 3.123 Blackwell (1997) BCO (all) Blue mackerel Scomber 0.0088 3.110 Annala et al. (1998) EMA (all) Blue mackerel autrolasicus	total length where appropriate). Common and species names are invitation or a species name are given as Annala of al. (1998). are given as Annala of al. (1998). Fishstock Common name Scientific name a b Source	Table 30: Coefficients in the weight-length relation $W = a L^{1}$ for the finith species for which the set of the set of the species of the set of the s

,

ţ

Table 31: Mean weight (W_M in g), mean length (L_M in cm), their c.v.s, and the number of points in the sample (N) for data from the boat raimp surveys conducted in the North region in 1991, 1994, and 1996. The c.v.s are expressed as percentages East Northland East Northland East Northland Hauraki Gulf Hauraki Gulf Hauraki Gulf Bay of Plenty Snapper (Jan – Dee) East Northland East Northland East Northland Gulf & Bay Gulf & Bay Gulf & Bay Kahawai (Jan - Jun) KAH 1 KAH 1 East Northland East Northland East Northland Gulf & Bay Gulf & Bay SNA 1 SNA 8 SNA 8 SNA I KAH 9 KAH 9 KAH 9 KAH Snapper (Jan – Jun) Fishstock - Dec North 1991 North 1994 National National North 1991 North 1994 National North 1991 North 1994 North 1991 North 1994 North 1991 North 1994 North 1994 National North 1991 North 1994 North 1991 North 1994 National North 1991 North 1994 North 1991 North 1994 North 1991 North 1994 Survey National National North National National National North 1991 North 1994 National 8 3 949 17 912 18 502 10 697 2 350 2 582 4 204 18 286 18 286 18 502 11 902 19 670 18 596 13 730 3 040 2 956 1 960 2 255 2 582 3 660 950 1 731 836 1 038 775 724 836 849 849 849 849 278 437 536 c.v.(W_M) NN - N 40.7 42.4 40.9 40.9 37.7 41.7 45.4 42.2 45.4 31.4 32.2 34.6 31.5 31.1 442.0 Ì v (L_M) 0.2 000 Table 31 --- continued Blue cod BCO 1 BCO 1 BCO 1 Red gurnard GUR 1 GUR 1 GUR 1 TRE I TRE I TRE I TRE 7 TRE 7 TRE 7 TAR TAR Trevall KIN KIN KIN GMU GMU Grey mu Tarakih Fishstoch North 1994 North 1994 North 1991 North 1994 North 1994 National North 1991 North 1994 North 19 North 19 National North 19 North 19 National Survey National North 19 North 19 National North 199 Gons forth 1994 (Carl) 199 19 19 199 4 150 1 075 1 129 375 241 1091 2210 183 442 178 282 251 23 33 226 2 1 831 1 150 1 180 930 970 453 429 324 324 430 432 639 ž 342 C.V.(WM) 3..... N N 14 6 40.5 36.5 38.1 37.4 33.7 34.9 34.9 32.6 31.5 27.2 25.6 27.4 56.5 79.4 38.7 30.3 30.4 31.6 28.3 31.5 29.1 32.1 34.8 Ľ C.V.(Ly) 12 12 0 0 7 200 1.9 14.3 222 09212 888 222 1.5 25 5412

Kigure I: Map of the North region of New Zealand showing the diary zones numbered as in the 1996 national diary survey. The names are used for the diary zones in this report are: 1 – North Cape to Cape Brett; 2 – Bay of Islands; 3 – Cape Brett to Cape Rodney; 4 – Whangarei Harbour; 5 – Barrier Islands; 6 – Western Gulf; 7 – Inner Gulf; 8 – Firth of Thames; 9 – Eastern Gulf; 10 – Northern Bay of Plenty; 11 – Middle Bay of Plenty; 12 – Tauranga Harbour; 13 – Eastern Bay of Plenty; 20 – Waikato; 21 – Manukau Harbour; 22 – Kaipara Harbour; and 24 – Dargaville.

.

and a strand ware a second of the second second

Ş

「「「「「「「」」」」

and a support of the later by

Catch rate (fish/hour), or Probability that snapper were not caught (po). The data are for trips using a balted line, jigging, or jigging Figure 4: Mean-of-ratios (H_1) and ratio of-means (H_2) snapper harvest rates and the probability zone in the Bay of Plenty. with a bait, and where the target species was snapper or general. The resting are plotted by diary 0.4 0.4 0.8 0.4 0.2 1.0 0.0 1.0 0.8 0.4 0.0 0.2 0.8 0.0 0.2 1.2 1.2 0.0 2 20 2 91 24 2 2 2 8 8 8 8 H Ξ H Ξ 00 0.0 2 0.6 0.8 0.2 9.4 0.0 0.2 2 20 2 24 1.0 0.6 5 1.2 1.2 1.0 2 2 2 Year of survey 91 Eastern BOP Tauranga H Mid BOP 22 8 **9**4 \$ 8 8 8 8 H2 H2 H2 Ξ 0.0 22 0.4 0.6 0.8 8.0 8 2.2 0.4 0.6 8.0 0.1 5 00 22 0.4 90 5 فع 2 2 2 i 2 2 8 8 8 8 3 2 ъ 멍 **a** sh/hour) bab that snapper were not caught (70). The data are for trips using a baded line, jigging, or jigging with a bait, and where the target species was snapper or gendar. The results are plotted by diary zone on the 1 Figure 5: Mean-of-ratios (H) and ratio-of-means (H) shapper partest rates and the probability 1.2 0.2 <u>°</u>4 60 0.8 2 5 0.0 0.2 0.8 0.4 1.2 2 0.4 0.6 8.0 1.2 0.0 1.0 1.2 2 2 Ç past of the North Island. **9**4 24 2 8 8 g H H 0.6 1.2 0.8 0.4 0.6 0.0 0.2 8 0.8 1.0 1.2 91 2 cary Manukau H Kaipara H Waikato 2 2 2 Prey 8 8 8 R H2 H2 H2 0.6 <u>.</u> 0.0 0.2 24 8.0 g 0.2 0.0 F 22 24 0.8 ... 0.2 0.4 0.6 0.8 0.0 6 0.8 5 5 0 91 2 91 2 \$ 2 2 2 8 8 8 8 ţ ţ 8 8 2 8

Catch rate (fish/hour), or Probability

Figure 7: Mean stos (H₁) and ratio-of-invants (H2) means a bailed line, jigging, or jigging that kahawai wex-riot caught (po). The data are for trips using a bailed line, jigging, or jigging with a bait, and where the target species was kahawai, snapper, or general. The results are plotted

Catch rate (fish/hour), or Probability

Ć

Figure 14: Kahawai length frequencies from East Northland (ENLD) and the Hauraid Gulf

.....

Figure 21: Kingfish and barracouta length frequencies from QMAA afold QMA 9 measured at boat ramps in the North region in 1991, 1994, and 1996. Fish less than 30 cm are plotted as if they were 30 cm and fish er than 110 cm are plotted as if they were 110 cm.

State of the state

-

Ċ

Appendix 1. Mathematical definitions of harvest rates and related quantities

Definitions

Let i = 1, 2, ..., N, x_i = trip length of the *i*th angler or party in hours (fishing effort), y_i = harvest by the *i*th angler or party, n = number of anglers or parties interviewed, and N = number of anglers or parties in the fishery on a given day. The following definitions are used where approximations involving the number of anglers sampled are given. This appendix is based on material in Jones *et al.* (1995).

$$\overline{x} = \sum_{i=1}^{n} x_i / n = \text{sample mean of angler or party effort;}$$

$$\overline{y} = \sum_{i=1}^{n} y_i / n = \text{sample mean of angler or party harvest;}$$

$$s_2^2 = \sum_{i=1}^{n} (x_i - \overline{x})^2 / (n-1) = \text{sample variance of angler or party effort}$$

$$s_2^2 = \sum_{i=1}^{n} (y_i - \overline{y})^2 / (n-1) = \text{sample variance of angler or party catch;}$$

$$c_z = s_z / \overline{x}; c_y = s_y / \overline{y}; c.v.s \text{ of the effort and catch;}$$

$$h_i = x_i / y_i = \text{harvest rate of angler or party;}$$

$$\hat{H}_i = \sum_{i=1}^{n} h_i / n = \text{per-angler or per-party estimator of mean harvest-rate. This is the mean-of-ratios estimator which is an estimator of \hat{H}_i is
$$\hat{v}(\hat{H}_i) = \frac{\sum_{i=1}^{n} h_i / N}{n(n-1)} \text{ and its } c.x. \text{ In }$$
The estimator used for the variance of \hat{H}_i is
$$\hat{v}(\hat{H}_i) = \frac{\sum_{i=1}^{n} (h_i - \hat{H}_i)^2}{n(n-1)} \text{ and its } c.x. \text{ In }$$
The ratio of means harvest rate is
$$\hat{H}_j = \sum_{i=1}^{n} y_i / \sum_{i=1}^{n} x_i.$$$$

 \hat{H}_2 is a biased estimator of H_2 when fishers are sampled at the end of their trips (Jones *et al.* 1995).

The approximation used for the estimate of the c.v. of \hat{H}_2 is

 $c.v.(\hat{H}_{2})^{2} = c.v.(\bar{x})^{2} + c.v.(\bar{y})^{2}.$

1999年1999年1999年1999年1999日日の1997年1997年1

This expression ignores any correlation between \overline{x} and \overline{y} . The correlation between effort and harvest should be positive and would act to reduce $c.v.(\hat{H}_2)$ and the expression used should be conservative, that is to overestimate the c.v. The correlation term appears to be small. Some simple bootstrap calculations suggest that this expression for the c.v. is not grossly wrong in magnitude. The distributions of the harvest rates mean that the bootstrap confidence intervals are somewhat skewed.

More sophisticated analyses by Jones *et al.* (1995) and Bradford (unpublished results, Project REC9702 report for Objective 2) suggest that the confidence intervals for all harvest rate estimators are likely to be skewed (badly so for small sample sizes), and larger than the target coverage would suggest. Obtaining the "best" estimator of the variance of the ratio-of-means estimator is an active area of research.

The true harvest rate required could be either that depending upon circumstances.

Appendix 2. Other possible estimators of harvest rate

The ratio-of-means and mean-of-ratios estimators give substantially different results for the kahawai target fishers. Some problems may have been introduced by the mixed methods allowed in the definition of the kahawai target fishery. The use of a mixture of methods was made necessary by the small number of kahawai target trips that are actually made.

Two further estimators are examined. The first, which is based on the "combined" estimator used in some GLM analyses of catch rates in commercial rates, is defined as:

where H_1^* is the ratio of means estimator using only those trips where there was a kahawai catch and (1, b) is the probability of making a catch. The mean-of-ratios estimator could also have been used. The second $(H_1^{-\eta})$, which is based on an idea proposed by Pollock *et al.* (1997), uses the mean-of-ratios estimator adjusted so that all trips of less than half an hour are ignored. The results are given below for the kahawai target fishery using data from throughout 1996 and subdivided by region.

The rationale for removing short trips from the mean-of-ratios estimator is that estimating the time of a fishing trip is difficult, especially for short trips. First, how is a fishing trip defined? For example, what preparation and tidy up operations are included. Second, the fishing times are estimates by the fishers recalled after the event and will contain some error. When several fish can be caught in a short time, the individual harvest rates will be large with potentially a large error which can introduce bias into the mean-of-ratios estimator. Trips targeting kahawai once a school has been sighted can be short as catching kahawai can be fairly easy once a school is found. However, kahawai may be becoming wary of the sounds of recreational fishing boats and consequently becoming more difficult to catch, thus reducing the catch rate (Mark Feldman, Recreational Fishing Council, pers. comm.).

Additional estimates of harvest rates for the kahawai target fishery (any method with kahawai as target species) by region in 1996. Some of the numbers are repeated from Table 22. c.v.s are not repeated from Table 22. The c.v.s are expressed as percentages

Area	H_2	H_2^+	c.v.	Po	H_{com}	с.у.	H _I	H _I ^{adj}	с. у.
Bay of Plenty	0.779	1.319	9.9	0.514	0.641	12.3	1.215	0.840	8.4
East Northland	0.916	1.828	7.1	0.519	0.880	10.0	1.381	0.797	5.9
Hauraki Gulf	0.774	1.404	14.6	0.520	0.674	20.0	0.879	1.057	18.3
West coast	0.682	1.321	12.2	0.549	0.595	15.5	1.556	1.025	13.2

The values of H_{con} are less than those of the ratio-of-means estimator. If the mean-of-ratios estimator had been used to estimate the mean harvest rate for the successful trips, H_{con} would almost certainly become larger. Ignoring the short trips when calculating the mean-of-ratios estimator gives lower estimates of the harvest rate than when all trips are included except in the Hauraki Gulf. And except in East Northland, the estimates of H_1^{col} are greater than those from the mean-of-ratios estimator.

One conclusion is that there are several possible definitions of the harvest rate in the kahawai target fishery.

Some simple bootstrap calculations were made using the barvest rates from the bahawai target fishery. The ratio-of-means estimator had little bias (the bootstrap mean differed little from the ratio-of-means estimate from the data). The mean of-ratios estimator had little bias if the catches and fishing times were sampled using the same sampling index and was biased (in either direction) if they were sampled separately. Sampling the catch and the effort separately presumably changes the probability of associating a particular catch and effort. The bootstrap distributions tend to be skewed. As stated above, estimates of c.v. from the bootstrap calculations were not wildly different from the estimates made using the formulae in Appendix 1. ·

.

Final Research Report

31 August 2003

Monitoring <

KAH2000

Bruce Hartill

Ltd

National Institute of

Report title:

Length and age compositions of recreational landings of kahawai in KAH 1 in 2000-01, 2001-02, and 2002-03

Atmøsphe

Taske

Research

composition of

Bruce Hartill, Helena Armiger, Crispin Middleton, David Fisher

recreational landings of kahawa

1. Date:

Authors:

2. Contractor:

3. Project Title:

4. Project Code:

5. Project Leader:

6. Duration of Project: Start date: Expected completion date: 30 September 2003

7-11. See attached draft Fisheries Assessment Report.

12. Publications:

Hantil, B. 2001: Monitoring the length and age composition of recreational landings in 2001-02. Research Progress Report for Ministry of Fisheries Research Project KAH2000/01: Objectives. 1. 8 p.

- Hartill, B.: Carenhead, H., Tasker, R. and Smith, M. 2001: Monitoring the length and age composition of recreational landings of kahawai in KAH 1 in 2000-2001. Final Research Report for Ministry of Fisheries Research Project KAH2000/01 Objective 1.11 p.
- Hamill, B. 2002: Monitoring the length and age composition of recreational landings in 2001-02. Research Progress Report for Ministry of Fisheries Research Project KAH2000/01: Objectives. 1.
- Hartill, B., Cadenhead, H., Tasker, B., Middleton, C. 2002: Monitoring the length and age composition of recreational landings of kahawai in KAH 1 in 2000-2001 and 2001-02. Final Research Report for Ministry of Fisheries Research Project KAH2000/01 Objective 1.35 p.
- Hartill, B. 2002: Monitoring the length and age composition of recreational landings in 2002-03. Research Progress Report for Ministry of Fisheries Research Project KAH2000/01: Objectives. 1. 6 p.

1

13. Data Storage:

ł

All interview, length frequency and ageing data relating to recreational landings of kahawai have been entered onto the MFish relational *rec_data* and *age* databases with adherence to its quality assurance standards administered by NIWA. Data from catches which do not include kahawai were stored but not checked or entered onto the database. The collection and databasing of non-kahawai related data was not covered under the contract for KAH200001, but has been collected incidentally and may prove useful in the future.

EXECUTIVE SUMMARY

Hartill, B., Armiger, H., Tasker, R., Middleton, C., Fisher, D. (2003). Length and age compositions of recreational landings of kahawai in KAH 1 in 2000-01, 2001-02, and 2002-03.

New Zealand Fisheries Assessment Report 2003/xx. Xx p.

Due to the widespread and comparatively random nature of recreational fishing effort, the kahawai length and age distributions described in this report are more likely to be representative of the underlying population than those derived previously from commercial purse seine and single traws landings (Bradford 1999, McKenzie and Trusewich 1996). As kanawai school by size, and commercial landings are usually comprised of fish from only one or two schools, the age distributions of commercial catches tend to be both highly variable and narrow. Distributions derived from amalgamating these commercial landings are therefore usually multimodal, as there are generally insufficient catches sampled to describe more than a few schools of kahawal. Further, as a small number of purse seine fishing events account for a large proportion of the annual commercial catch. only a fraction of a population's spatial range is fished. In contrast, a recreational fishery is comprised of thousands of trips, which sample a greater number of schools at a much lower level of intensity, and is therefore likely to be more random and representative. Resultant length frequency distributions tend to be more unimodal, with any secondary peaks probably reflecting strong year classes rather than the influence of individual schools. There is no minimum level size for kahawai and recreational fishers therefore tend to land a greater size range of kallaviat in addition to providing a broader description of the population in the area fished.

This report summarises the results of the first three years of sampling of recreational kahawai landings in 2000–01, 2001–02 and 2002–03, from three regions in KAH 1: East Northland, Hauraki Gulf and the Bay of Plenty, and is essentially an update of the Final Research Reports summarising the first two surveys (Hartill et al. 2001) Hartill et al. 2002).

Bradford (2000) recommended that (00,500 kahawai be aged to provide a reasonable approximation of a population's age structure. Recreational fishers were generally willing to let NIWA staff remove the heads of their landed kahawai, and adequate age sample sizes were obtained in all three regions. Bradford (2001) also recommended that approximately 1500 kahawai length measurements were required to provide a description of the less common length classes in a regional length frequency distribution. This target was betachieved in any of the three regions, as levels of sampling effort were based on historical boat ramp data, and there appears to have been a subsequent decrease in the number of kahawai landed per hour of interviewing. It is not clear whether decrease this is due to a reduction in overall fishing effort and/or reduced kahawai catch rates by recreational fishers. Anecdotal evidence suggests that kahawai catch rates have fallen in recent years. Although fewer kahawai have been measured than intended, analytically-derived mean weighted coefficients of variation (c.v.s) indicate the length and age compositions of the regional populations have been estimated with reasonable precision (<0.2).

Ramp specific age distributions were spatially and temporally variable, which probably reflects the helerogeneous distribution of a species which schools by size, and hence age. Clearer and more consistent patterns emerge however, when data are combined at a regional level, especially across years. The Hauraki Gulf catch distribution was largely comprised of relatively small, younger fish, with the East Northland region having a broader length distribution dominated by fish of less than 7 years of age, while the Bay of Plenty catch distribution was mainly comprised of larger fish, reflecting a broader underlying age distribution. These length and age distributions are broadly consistent with those derived from boat ramp survey data from the early 1990s (Bradford 2000).

A broadening of age distributions and increased numbers of kahawai encountered by boat ramp interviewers in the second half of each annual survey suggests a possible onshore movement of sexually mature kahawai following spawning in deeper waters. The timing of these behaviours is probably influenced by prevailing environmental conditions that vary from year to year. The relationship between the size and abundance of kahawai caught relative to distance offshore was examined in East Northland and the Bay of Plenty, and there is some evidence of a trend of increasing fish size with distance offshore.

1. INTRODUCTION

Random representative sampling of kahawai (Arripis trutta) populations for length and age is problematic given the species' size-specific schooling behaviour. For example, analgamated length frequencies collected from commercial purse seine landings in 1990-91 and 1991-92 were multimodal, and McKenzie & Trusewich (1996) concluded that this was probably an artefact of the way the purse seine fleet operated, rather than an intrinsic feature of the Bay of Plentx population. While comprehensive sampling of commercial catches can be used to characterise commercial extraction, these samples cannot be considered indicative of the bade of the bar of population length and age structure, as the fishery operates non-randomly in space and time

Recreational fishers however, are thought to fish kahawan in a more random and representative manner than the commercial fishery (Bradford 2000). Recreational fishers catch, and tend to land, a wider size range of fish than that taken by the main commercial fisheries (Bradford 1999). A time series of recreational catch-at-age estimates should therefore provide a more accurate representation of population age composition, which may be used to monitor the fishery. This report summarises the results of the first three years of recreational catch sampling carried out in KAH 1. The objective of this study (KAH2000/01 – Monitoring the length and age composition of recreational landings of kahawai) was:

To conduct the sampling and determine the length and age composition of the recreational landings of kahawai in KAN 1 during the fishing years 2000-01, 2001-02 and 2002-03.

METHODS 2.

2.1 Previous boat ramp surveys

In 1990 91 a survey was conducted to collect baseline information on harvest rates by recreational fishers interviewed at boat ratups throughout the Auckland Fisheries Management Area (AFMA; Sylvester 1993). Most interviewing occurred on weekends between Boxing Day 1990 to June 1991. The man objective of a further survey in 1994 was to verify aspects of a concurrent recreational fisher diary survey. The length compositions of recreational catches measured during boat ramp interviews were compared with those reported by diarists. These boat ramp data were also used in conjunction with an aerial survey to estimate harvest from the Hauraki Gulf, which was compared with that derived from the diary programme (Sylvester 1994). In 1996 a nation-wide boat ramp survey was carried out to estimate the mean weights of fish species caught by recreational fishers (Hartill et al 1998). These mean weights were used in conjunction with estimates of the numbers of fish taken, derived from a telephone diary survey, to provide estimates of the national recreational harvest of key species (Bradford 1998a).

Although kahawai length frequency data are available from these boat ramp interviews, the underlying survey designs differed both spatially and temporally, and no age data were collected concurrently. Nonetheless, in a review of data collected from these surveys, Bradford (2000) suggested that sufficient kahawai were landed by recreational fishers to support a length and age catch sampling programme in KAH 1.

2.2 Sample design

The sample design for the 2000-01, 2001-02 and 2002-03 surveys was based on data collected from boat ramp surveys conducted in 1991, 1994, and 1996. Kahawai length data from these surveys suggested that there were substantive regional differences in the length frequency compositions of kahawai caught by recreational fishers in East Northland, the Hauraki Gulf and Bay of Plenty (Bradford 1999, Hartill et al. 1998). Separate recreational boat ramp surveys were therefore conducted in each of these regions (Figure 1), with concurrent collection of length and age samples from recreational landings of kahawai.

Sampling of recreational catches was restricted to a four-month season. I vanuary to 30 April 2001, which corresponds approximately to the peak of the recreational fishing season, when kabawai landings were likely to be most abundant. Restriction of sampling to a four-month season was also desirable, as a longer collection period would have increased the likelihood of growth distorting an age-length-key. Further, as otolith ring deposition occurs during the onset of winter (Stevens & Kalish 1998), collection of otoliths in early winter should be avoided, as ambiguous structures on the edge of the otolith may result in ageing error.

Figure 1: Location of boat ramp interview sites.

Sampling took place solely on weekends and holidays when most recreational fishing usually occurs. Results from the 1996 boat ramp survey demonstrated that for the most commonly caught species, there were no substantive differences between length frequencies of fish caught during weekdays and weekends (Hartill et al. 1998).

Bradford (2000) recommended that 400–500 kahawai should be aged to give a reasonable approximation of the relationship between length and age, and hence, a population's age structure. A further recommendation from this study was that as many fish as possible, preferably 1500 (E. Bradford *pers comm.*), should be measured to provide a reliable length frequency distribution. The timing and intensity of recreational landings of kahawai is, however, difficult to predict given interannual variability in fishing effort and the spatially dynamic value of kahawai schooling behaviour. A reasonable intensity of sampling effort was therefore required in space and time to intercept appreciable landings of kahawai when they occurred. The sample design used in 2000–01, 2001–02, 2002–03 was based on the number of kahawai landed and measured per hour at selected key ramps, during weekends and holidays during the 1991, 1994 and 1996 boat ramp surveys (Table 1). Regional estimates of the average of the number of fish lander per hour of nucrylewing given in Table 1 are weighted averages across survey years, where the relative weighting was based on the number of interview hours (i.e. sampling effort) taking place on weeksnes or statutory holidays.

Table 1: Sample design used to estimate how many hours of boat rame interviewing would be required to obtain measurements of 1500 kahawai in 2000–01, 2001–02, and 2002–03. Estimates were based on the average number of kahawai landed by recreational fishers per four, an weekends and statutory holidays, during the 1991, 1994 and 1996 boat ramp surveys.

Region	Average no. of fish Number Session landed/interview by of ramps length (hrs)	Number of sessions	Estimated number of kahawai measured
		28	1 558
East Northland		21	1 553
Hauraki Gulf Bay of Islands	4	12	1 498

Sampling sessions at each ramp were randomly assigned to weekend/holiday days between 1 January and 30 April. If an interviewer found that there were strong onshore winds or local competitions on any of these dates, sampling took place on the next available weekend/holiday day. Interviews followed the format of those undertaken in 1991, 1994 and 1996 to ensure that the data were collected in a consistent manner. When more than one vessel approached a ramp simultaneously, a vessel was thosen randomly prior to landing. When fishers landing kahawai were encountered, all fish, including kahawai, were measured. During interview sessions, recreational fishers who had not caught kahawai were also interviewed when this did not interfere with the interviewing of other fishers landing kahawai. These incidental data were stored but not checked for errors or entered into the database, as this was hor an objective of this study. However, these data may prove useful for other purposes in the future, and there was no additional cost in their collection.

For ageing purposes, kahawai were selected at random from each vessel's catch, from which no more than four fish were taken. As age samples were collected randomly, the length distribution of the age sample should broadly reflect the length distribution of the landed catch. Kahawai otoliths are fragile and time consuming to extract and interviewers therefore asked permission to cut the head off at the gills. Generally, in excess of 90% of recreational fishers permitted the interviewer to remove heads from their kahawai. These heads were retained by the interviewer together with a record of the fish's length, and a code linking the head to other data collected during the interview. Kahawai were not sexed, as there is no apparent sexual dimorphism in growth rates (Bradford 1998b). Otoliths were extracted from these heads at a later date.

2.3 Ageing of kahawal otollths

Kahawai otoliths were prepared using the thin section method described by Stevens & Kalish (1998). Each otolith was marked across an intended sectioning plane passing through the nucleus. Each otolith was then imbedded in a disposable epoxy mould with three other otoliths so that their nuclei were at the same level. Once the resin hardened, a thin transverse section was cut out of each epoxy block with a Struers Accutom-2 low speed saw. One side of this section was then ground, polished and mounted polished side down on a slide using 5-minute epoxy resin. After at least 1 hour, each slide was ground with a series of progressively finer carborundum papers (100, 1200, and 4000 grit) to a thickness of 250 to 350 µm depending on ring increment clarity. A suspension of 1.0 µm atomina powder (Linde A) was used for the final polish.

To improve clarity, a thin layer of immersion oil was brushed over each slide and reading took place under transmitted light. Three readers were used to interpret the thin sectioned otoliths and disagreements in interpretation were resolved using a method similar to that used for snapper (Davies & Walsh 1995) which was as follows:

- · each reader independently read all otoliths collected from a region.
- disagreements between the three reader's initial age estimates were identified and where one or more readers failed to agree in their initial interpretation of an otolith, those readers reread the otolith with no knowledge of any prior age estimates.
- remaining disagreements were resolved by discussing integes of otoliths projected onto a video screen until a consensus was reached.
- if no consensus could be reached, the dolith was discarded from the dataset.

Very few otoliths were discarded in practice and when this occurred, both otoliths were usually deformed and hence, unreactable.

2.4 Data analysis

Proportional carch at length and calch at age distributions and analytical variance estimates where calculated for each region using a FORTRAN program developed for a snapper market sampling programme (Davies & Walsh 1995). Wessels landing kahawai were regarded as individual strata, which were weighted on the basis of the number of kahawai landed. The distribution of fish at age within length classes (an age-length key) was derived for each region, and used to translate the regional length classes (an age-length key) was derived for each region, and used to translate the regional length classes (an age-length key) was derived for each region, and used to translate the regional length classes (an age-length key) was derived for each region, and used to translate the regional length classes (an age-length key) was derived for each region, and used to translate the regional length classes (an age-length key) was derived for each region, and used to translate the regional length classes (an age-length key) was derived for each age. Proportional catch-at-age estimates were calculated for the range of age classes recruited, with the maximum age being an aggregate of all age classes greater than 19 years. Recreational catch-at-age and length frequency distributions and their associated variances were presented in the form of histograms and tables. Age data were collected in a random manner with respect to length, and von Bertalanffy growth curves were therefore fitted to unscaled regional length and age data iteratively, by least squares regression. Growth curves were compared visually.

For each region, catch-at-age distributions were derived for each ramp, and for each of the four months sampled using the same analytical approach used to derive regional distributions. Regional, and not ramp (or month) specific, age-length-keys were used to derive these age distributions, as the number of kahawai aged from each ramp (or month) was considered insufficient to describe the underlying length-age relationship. This assumes that the location of a ramp (or time of sampling, given the four month sampling period) has little influence on the relationship between length and age within a region. Spatial and temporal trends in the underlying age composition of the regional kahawai populations fished by recreational fishers were then inferred from these histograms. Coefficients of variation (c.v.s) were not calculated for these distributions due to the low sample sizes of the component strata. Comparisons were made between ramps rather than the location at which they were caught, because in most areas there is little overlap between the areas fished from two or more ramps. During the 2001-02 and 2002-03 sampling seasons recreational fishers were asked to estimate how far offshore they had fished. This information was used to plot the relationship between the size of fish caught, month of capture and distance offshore.

3. RESULTS

3.1 The 2000–01 sampling season

A network of interviewers was established at 28 key boat ramps in East Northland, the Hauraki Gulf and the Bay of Plenty (Figure 1). Sampling ceased at Houhora in early February due to consistently low numbers of recreational vessels using the ramp and the low numbers of kahawai consequently measured. Interviewing activity was transferred to a second ramp at Parua Ray in Whangarei Harbour, where fishing activity was far greater. In East Northland and the Hauraki Gulf, the number of kahawai landed per hour in 2001 (Table 2a) was less than predicted from previous surveys (see Table 1). At the Whakatane ramp, two of the interview sessions took place during a competition. Prior to the competition starting, fishers were advised that a spot prize was offered for kahawai and that all kahawai should therefore be landed. Proportional length frequencies created with, and without, length data from this competition were compared and tound to be similar. No other competitions were sampled in 2001.

Table 2a: Summary statistics by region of the number of interview sessions, hours surveyed, vessels with measurable kahawai, kahawai measured, kahawai measured per bour and kahawai aged in 2000-01.

		~//))	\sim	$\langle \vee$			
	•	Pama // A	Number of	Number	Boats with	Kahawai	Kahawai	Kahawai
	Region		sessions	(othours))	measurable	measured	measured	aged
		-	$\sim D$	$\langle \bigcirc \rangle$	kahawai		per hour	
		(\sim)		$\gamma \searrow$				
	Test Mosthland	Houhora		66	5	10	0.2	10
		Mangorou	128	150	92	302	2.0	79
	1	Onito Bay	-734,	✓ 145	62	226	1.6	73
	~ \\	Zuzmanei	546	144	78	201	1.4	79
	// ^ \	Turnicaka	24	144	42	95	0.7	88
		Parua Bay (public)	27	163	62	121	0.7	71
	\sim	Parura Bay (club)	\sim 20	118	86	169	1.4	49
~	\sim	One The Roint	13	73	11	30	0.4	25
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\land \land^{\vee}$	Mangawak	25	126	36	82	0.7	43
	$\bigvee$		106	1170	474	1236	1.1	517
	$\sim$ $\sim$	Total	190	1147	•• •			
	2		18	109	18	26	0.2	23
	Hauraki Ott		22	121	47	81	0.7	71
$\langle \rangle \rangle$	- (C e	CADE Harbour	12	72	10	16	0.2	14
$\sim$		Browns Day	20	114	40	93	0.8	49
		/ lacapuna	15	103	15	23	0.2	22
· /		Westnaven Mehaen Bau	20	114	17	· 30	0.3	30
~~~~	$\sim \sim$	NO0SOII DAY	10	47	7	10	0.2	0
	$\langle \langle \rangle$	Cicalifu Day	29	173	132	260	1.5	· 98
	$\mathbf{\nabla}$	Mantal Month Day	19	97	. 60	170	1.8	103
	-	Vanakaus Rav	26	120	63	139	1.2	52
$\langle \rangle$		Te Kouma	21	103	26	44	0.4	38
(\bigcirc)		Total	212	1174	435	892	0.8	500
\smile			10	40	8	24	0.6	16
	Bay of Pienty	Whitianga	. 10	48	30	86	1.8	. 60
		Bowentown	12	52	49	107	21	94
		Sulphur Pour	1.5	16	0	0	0,0	0
		Tou Bridge		13	18	50	3.8	38
		Maketu	3	11	68	315	+28.6	54
		WIRKEIRIC	17	69	43	164	2.4	81
		Unopc Mate Biner	11	28	29	185	6.6	0
		MOUL KIVEL	20	42	49	173	4.1	114
		W LINKU Daj Total	100	319	294	1104	3.5	457

* Two of these sampling events took place during a competition
3.2 The 2001–02 sampling season

The boat ramps used and sampling design employed in 2001-02 was based largely upon that used in 2000-01. In the Hauraki Gulf, sampling effort at one ramp, Hobson Bay, was transferred to Halfmoon Bay where vessel traffic volumes necessitated the employment of two interviewers, and effort at Omaha was transferred to the nearby Sandspit boat ramp. In the Bay of Plenty, sampling effort at Toll Bridge, Tauranga was transferred to Whangamata where landings of kahawai were thought to be higher. These changes in sampling locality are unlikely to introduce between year variability for two reasons. Firstly, relatively few kahawai were encountered at the ramps concerned, and secondly as sampling effort was shifted to a nearby ramp, those fishers encountered would have fished similar areas. The number of kahawai landed per hour was less than that observed in the 1991, 1994 and 1996 surveys (Table 2b), however, sufficient kahawai were sampled to describe regional catch-at-length and catch-ar-age distributions.

Table 2b: Summary statistics by region of the number of interview sessions, hours surveyed, vessels with measurable kahawai, kahawai measured, kahawai measured per hour and kahawai aged in 2001-02.

				$\sim \times \times \sim$	-//`	1 - 1	
Region	Ramp	Number of	Number	Boats with	Kahawai	Kanawai	Kahawai
		sessions	of hours	measurable ¿	measured	measured	aged
			AR)	🔪 kahawai 🔪	ID.	per hour	
			///~</td <td></td> <td>$\sqrt{2}$</td> <td></td> <td></td>		$\sqrt{2}$		
East Northland	Mangonui	28	138	~ \XX	290	2.1	23
	Opito Bay	23	JJ 38	< 1 - 84 (` 238	1.7	105
	Waitangi	24	\bigvee 141	2/14	203	1.4	- 92
	Tutukaka	24	145//	25 2	107	0.7	70
	Parua Bay (public)	N M	146		106	0.7	64
	Parura Bay (club)		146	> 100	252	1.7	102
	One Tree Point	<u>~</u> 24	<pre>((143))</pre>	22	62	0.4	26
	Mangawai	V/ 27/	/\ns//	26	60	0.5	44
		\sim		401	1010		
	Total	197		491	1212	1.2	526
		\sim	\sim \sim	0	11		
Hauraki Gulf	Sancepe	V/2		10	42	0.1	10
	Gun Harbour	1/12	98	.19.	. 43	0.4	33
~~ ~~	Brownsubay		40	3	10	0.3	4
. \		V44	138	02	130	0.9	80
\frown	Westhaven	\wedge	91	20	60	0.7	46
$\wedge \times \checkmark$	Okahu Bay	20	114	12	23	0.2	16
-llnN	Half Moon Bay	× 38	219	97	231	1.1	143
\sim	Maretai	20	120	26	56	0.5	25
$\langle A \rangle \rangle \langle A \rangle$	KaungRawa Bay	27	120	48	91	0.8	60
$\langle v \rangle^{*}$ (Te Kooma	20	108	38	126	1.2	83
$\langle \langle \rangle \rangle$	Total	204	1138	339	786	0.7	500
				000		0.7	500
Bay of Pleating	Whitianga	14	55	25	66	1.2	62
	Whangamata	17	59	16	49	0.8	36
	Bowentown	14	56	49	98	1.8	75
	Sulphur Point	16	60	64	140	2.3	74
	Maketu	13	48	15	16	03	
()	Whakatane	16	54	164	588	28.6	70
$\langle \bigcup \rangle$	Ohone	20	53	27	- 99	1.9	13 64
$\overline{\mathbf{\nabla}}$	Mon River	11	17	37	245	14 4	17
	Waiban Bay	20	72	60	175	24	17 90
	·· management of the J	50	/-			F 1 4	90
	Total	141	474	457	1476	3.1	495

* Two interviewers used at this ramp, due to high volumes of traffic

3.3 The 2002–03 sampling season

The ramps sampled, and the target number of hours of surveying were the same as those outlined in the 2001–02 survey (Tables 2c and 2d). The number of kahawai measured per hour of interviewing at East Northland and Hauraki Gulf ramps was generally similar to that in 2000–01 and 2001–02, but in the Bay of Plenty, there has been a noticeable decline in the rate of kahawai landings since 2000–01. The number of kahawai landed per hour in all three regions were lower than those observed in boat ramp surveys conducted in the early to mid 1990s (see Table 1). Nonetheless, sufficient kahawai were measured and aged from each region to characterise catch-at-length and catch at age distributions.

Table 2c: Summary statistics by region of the number of interview sessions, hours surveyed, vessels with measurable kahawai, kahawai measured, kahawai measured per hour and kahawai aged in 2002-03.

						15	$\langle n \rangle$	• >
		D	Number of	Number	Boats with	Rahawai	Kabawai	Kahawai
	Region	Kamp	sessions	of bours	measurable	measured (measured	aged
			303310115	••••••	Kahawai	· ^\	per blour	
					\sim		\mathbf{S}	
		t	21	125	1)	266	2.1	112
	East Northland	Mangonui	21	16	V/ 90.	× 299	✓ _{1.8}	83
ł		Opito Bay	27	/ ser	V 95	28	1.6	94
i		Waitangi	22	A STA		$\nabla \sim 37$	0.3	31
4		Tutukaka	22 <		39	114	1.0	85
		Parua Bay (public)	5	1123	$\langle N \rangle$	137	1.0	79
		Parura Bay (Club)	16		- WAR	11	0.1	7
		One Tree Point	25	127	\sim	26	0.2	13
		Mangawai	1					
		Total	186	1049	X × 436	1 171	1.1	504
			\sim \sim \sim	(\bigcirc)	$\mathbf{>}$			
	I Townshi Carlf	Sandsnit	/ / Ž 20 /	<u>\</u> \120)	17	49	0.4	28
	Hauraki Guit	Gulf Harbert	√/ 29/		34	47	0.4	27
		Browne Bay	∽ر¢ر	/ 117	9	31	0.3	31
		Tabanuna	(22)	116	30	67	0.6	62
		Welthaven	(da'	V 120	26	46	0.4	43
		A OLAHU MAY	1/20-	/ 120	11	16	0.1	11
		AralaMoon Bay*		231	116	254	1.1	166
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Martai	$\searrow 20$	120	- 22	41	0.3	24
		Kawakawa Bak	32	144	119	311	2.2	118
	\sim	Te Koussa	// 16	· 92	11	18	0.2	17
	$- D \times V$		/		205		07	527
	$\langle \langle \rangle \rangle$		231	1 301	393	880	0.7	141
	\sim		• ~		25	86	1.3	57
//	Bay af Plenty	Whitianga	10	64	لير ج	21	0.4	7
$\langle \rangle$	\sim	(Whangamata	14	24 60	17	47	0.9	40
	$\Delta = \Delta$	Bowentown	13	32	A.A	118	1.8	52
	× //N	Sulphur Point	10	64	40	106	1.9	48
		Maketu	14	50	120	377	66	160
		Whakatane	13	51	147	70	12	60 100
	$\langle \langle \rangle \rangle$	Ohope	17		22	202	12.3	<u>م</u>
~	\sim	Motu River	. 4	19	22	71	2.2	а А А
1	$\sim 1 >$	Waihau Bay	13	· 53	. 23	, ,,	4a . Eo	
	\mathcal{I}	Total	120	462	357	1 133	2.5	477 [•]

* Two interviewers used at this ramp, due to high volumes of traffic

3.4 Length and age distributions

East Northland

In all three year the length distributions of East Northland recreational kahawai landings were broad, with a mode of three year olds (predominantly 30 to 40 cm; Appendix 3) generally evident (Figure 2). Age distributions were dominated by 3 to 7 year old fish, which accounted for 77-80% of all fish landed. There was little change in the average age of fish landed between years (5.4.5.5 years). Cursory examination of proportional year class strengths through time, suggests that kahawai do not approach full recruitment to the East Northland recreational fishery until about 4 years of age (mostly greater than 35 cm), after which the abundance of each year class is usually less than that which follows. Length and age distributions were both described with reasonable precision, with c.y.s of 0.17-0.18 (Appendix 1) and 0.12-0.13 (Appendix 2) respectively.

No latitudinal trends were evident in catch-at-age from East Northland ramps (Figure 3). With the exception of Ruakaka and Parua Bay (club ramp), there were no strong betweenyear differences, and any differences probably reflect variability caused by the low sample sizes. Some temporal changes are evident when monthly age distributions (across all ramps) are compared (Figure 4). In all years, three year old fish were more predominant in January landings, with 4 to 6 year old fish becoming more prevalent in the later months. The consistent nature of this temporal pattern suggests that changes in the age composition of recreational landing may be due to a mechanism such as onshore movement of schools of older fish in later months. Further evidence for such a mechanism is seen in the marked increase in the number of kahawai encountered by interviewers in Warch and April (Figure 4).

Figure 3: Age distributions by ramp in East Northland in 2000-01, 2001-02 and 2002-03 (see Tables 2a, 2b & 2c for sample sizes).

Estimates of the distance offshore at which kahawai were caught were available for 1009 fish measured in 2001-02 and 950 fish in 2002-03 (Figure 5). Of these, 84% and 97% respectively, were caught less than 5 kilometres offshore, with the majority of the remainder caught within 10 kilometres of the shore. Despite the limited number of offshore observations, there is some indication that the average size of kahawai increases with increasing distance offshore.

Hauraki Gulf

Marked differences in annual length compositions of Hauraki Gulf landings reflect the relative strengths of underlying component age classes (Figure 6). Landings in 2000–01, and to a lesser extent 2062–03, were strongly dominated by the 3 year old age class, evident as a length mode peaking at around 35 ern. In 2001–02, a 3 year old age class was once again dominant, but to a far lesser extent that in the previous year, and the resulting length distribution was more multimodal. The Hauraki Gulf fishery is however, the most poorly described of the three regions sampled, as the number of kahawai landed per hour of interviewing has declined steadily since the early 1990s, resulting to reduced length and age sample sizes (Tables 1, 2a, 2b and 2c). Length compositions were estimated with mean weighted c.v.s ranging from 0.22 to 0.25. The age distributions were more precisely described with mean weighted c.v.s of 0.11 to 0.13 (Appendices 1 and 2), which is probably due to the high abundance of a single age class.

٠.,

The predominance of 3 to 5 year old kahawai suggests that the Hauraki Gulf may act as a nursery area. Further, this is the only region in which 1 year old fish were landed in any number. The presence of small kahawai in Hauraki Gulf landings may also reflect region-specific differences in fisher behaviour and the methods they employ. Lower catch rates in the Hauraki Gulf may increase the probability that small fish are landed by fishers compared to other regions.

13

Ramp-specific age distributions were characteristically dominated by 3 year olds, except for Te Kouma in later years (Figure 7). Those ramps at the head of the Hauraki Gulf showed a greater similarity to neighbouring ramps in East Northland and the Bay of Plenty (see Figures 3 and 10). In contrast to the other two regions, ramp-specific age distributions in the Hauraki Gulf show marked differences between years, although this may be due to variability arising from the small sample sizes obtained (Tables 2a, 2b and 2c), and movements by kahawai schools in relation of variable climatic conditions. Cursory examination of monthly age distributions through time, suggest that the age structure became increasingly broad as the sampling season progressed (Figure 8). In the last two years, there is some suggestion of an increase in the number of kahawai landed by recreational fishers in later months.

The relationship between the abundance and size of kahawai landed with respect to distance offshore years not assessed, as the shape of the coastline, and abundance of islands makes any such interpretation difficult.

Bay of Plenty

Bay of Plenty length distributions were characteristically dominated by fish in the larger length classes with a peak at around 50 cm (Figure 9). In 2000-01 the Bay of Plenty age distribution was more broadly distributed than elsewhere, with over 44% of the kahawai landed being 7 years or older. As the relatively strong 8 to 11 year old age classes (in 2000-01) declined in the later two years, the average age of kahawai has also declined, from 6.6 to 5.8 years of age. While kahawai catch rates in the Bay of Plenty are relatively high, compared to elsewhere, the number of kahawai landed per hour of interviewing has declined markedly over the survey period, which may indicate a decline in local abundance (Tables 2a, 2b and 2c). The precision of annual length and age compositions ranged from 0.14 to 0.18 (Appendices 1 and 2).

Figure 9: Length and age distributions (histograms) and c.v.s (solid line) of recreational landings of kahawai in the Bay of Plenty in 2000-01; 2001-02 and 2002-03.

Figure 10: Age distributions by ramp in the Bay of Plenty in 2000-01, 2001-02 and 2002-03 (see Tables 2a, 2b & 2; for sample sizes)

No clear temporal or spatial trends are evident in ramp-specific age distributions (Figure 10). The age distribution of kahawai landed at neighbouring ramps often differed markedly during the same survey year, possibly reflecting differing degrees of mobility by the local fishing community, or high spatial heterogeneity in the kahawai population. Although no consistent trends are evident in monthly age distributions, the number of kahawai landed and measured by boat ramp interviewers was generally greater in March and April (Figure 11).

Estimates of the distance offshore that kahawai were caught were available for 1385 fish in 2001-02 and 817 fish in 2002-03 (Figure 5). Of these, 72% and 80% respectively, were caught less than 5 kilometres offshore, with the nuch of the remainder caught within 10 kilometres of the shore. There was some indication of an increase in the size of kahawai landed with increasing distance offshore.

Figure 11: Age distributions by month in the Bay of Plenty in 2000-01, 2001-02 and 2002-03. The number of fish measured is given for each month.

Figure 12: Average size of kahawai caught in relation to distance offshore (in 5 kilometre bins) by month in the Bay of Plenty in 2001–02 and 2002–03. Error bars denote standard errors and numbers denote number of kahawai measured.

3.5 Growth rate estimates

On a regional basis, there is a marked similarity between the growth curves derived from each of the annual surveys (Figure 13, Table 3). Slight differences are evident when regional growth curves are compared however, for example the East Northland curves are steeper. To some extent the shape of these growth curves will be determined by the availability of the smaller and larger length classes, which influence the fitting of von Bertalanffy parameters. In the Hauraki Gulf for instance, where juvenile fish are more common, the ascendant left hand limb of the curve will be described more accurately and precisely than in other regions, where fewer small kahawai are landed. All won Bertalanffy growth curves derived from the last three years are steeper than those previously documented for males and females in KAH 1 (McKenzie et al 1992).

Table 3: Von Bertalanffy growth parameters derived from kahzyal sampled from recreational catches in East Northland, the Hauraki Gulf and the Bay of Plenty in 2000-01, 2001-02 and 2002-63. Parameter estimates previously reported for KAH 1, and currently used in the 2002 plenary (Annala et al. 2003) are given for comparison (McKenzie et al 1992).

BIACH YON COT		~\\/		\mathbf{X}	
Region	Year	A A A A A A A A A A A A A A A A A A A	B	Linf	n
	000-01	-0.08	(Q.34)	54.5	517
East Northland	2000-01	0.51	11846	53.2	526
	2001-02	0.09	0.38	53.8	504
	2000-01		∑ ¹ 0.26	56.4	500
Hauraki Gulf	2000-01-02	0.25	0.33	55.2	500
	2002-01	0.39	0.29	55.8	527
		-0.23	0.28	55.1	457
Bay of Plenty		-0.33	0.31	53.6	495
^ `	2002-03	-0.17	0.34	53.1	477
	1001-02	-0.18	0.24	56.9	
Plenary KAH 1 (nate	1991-92	-0.20	0.24	55.6	
	$\sim \mathbb{V}$				

4. Discussion

Obtaining sufficient length at age samples from a region's recreational fishery is an uncertain process. Unlike commercial fisheries, where annual catch levels are largely determined by TACCs, recreational fishing effort, and kahawai landings vary depending on prevailing weather patterns and local catch rates. In East Northland and the Hauraki Gulf, the number of kahawai landed per hour of interviewing was consistently lower than experienced on average during the 1991, 1994 and 1996 boat ramp surveys. It is not clear whether this is due to a reduction in overall fishing effort and/or reduced kahawai catch rates by recreational fishers, although anecdotal evinence also suggests that kahawai catch rates have fallen in recent years. Although fewer kahawai were measured than the preferred target sample of 1500 fish, analytically derived mean weighted c.v. suggest that the length and age compositions of the regional populations have still been described with reasonable prezision (<0.2).

There are clear regional differences in the length and age compositions of recreational kahawai catches, and these differences are consistent across years. The Hauraki Gulf population was largely comprised of relatively, small younger fish, with the East Northland region having the broadest kahawai length distribution, dominated by fish of less than 7 years of age, while the Bay of Plenty distribution was mainly comprised of larger fish reflecting a broader underlying age distribution. These patterns are broadly consistent with those derived from boar ramp survey data from the early 1990s (Bradford 2000; Figures 1 to 3). Over the past three years the East Northland age distributions have become increasingly similar to those of the Bay of Plent).

In all three regions, localised are distributions derived from landings at individual ramps were variable, both spatially and connorally. This is perhaps not surprising given the size-specific schooling behaviour of kahawai and the low number of fish measured at individual ramps. Over small spatial scales of kilometres, and temporal scales of one or two weeks, fish of a similar size (and hence age) from one school can dominate landings at a given ramp. When catch data from all ramps within each region are combined, however, consistent age distributions emerge, as discussed above. Comparison of ramp distributions across all three regions suggest that the regional boundaries have some biological as well as geographic basis, although there is still some cross-boundary similarity e.g. East Northland and the Bay of Plency.

In East Northland and the Bay of Plenty, the age distribution of landed kahawai appeared to broaden over the three years surveyed. Earther, in all three regions the number of kahawai encountered by boat ramp interviewers was noticeably greater in the second half of the survey. These observations are consistent with an onshore migration of sexually mature kahawai in the autumn, following spawning in deeper waters in January and February (60–100 m; Annala et al. 2003). Interannual variability in regional climates probably influences spawning and schooling behaviour. Over the last three years, New Zealard's hortheastern coastal climate has gone from mild La Nina conditions (onshore northeasterly winds predominating with associated warmer than average water temperatures) to those associated with El Nino conditions (offshore south-westerly winds predominating and colder than average waters). Although interannual variability in the timing of onshore migrations may affect the comparability of age distributions between regions and years, future surveys should still take place over the same four-month period to help maintain consistency. Recreational fishing activity before January is too low and erratic, and the ageing of kahawai collected after April is problematic given the timing of otolith ring deposition.

When regional growth rates are compared between years, they appear to be similar, which suggests that length and age data from all three regions could potentially be combined to provide a more comprehensive age-length key. However, if kahawai movements between areas are size related, and year-specific, as suggested by the differences between regional length and age distributions, the use of a combined age-length key may introduce bias to the age distributions, which is highly undesirable.

As in all ageing studies, the possibility and likelihood of ageing error should be considered when interpreting age distributions and growth rates. Although consistent relative year class strengths and growth rates suggest that ageing error is not excessive, the magnitude of this issue remains uncertain. Stevens and Kalish (1998) used repeated readings from a single reader to infer possible levels of reader error when interpreting structures in this sectioned otoliths. In this study, we used three independent readers to reduce the probability of reader error, but it is highly unlikely ageing error has been totally eliminated. Further, we used the thin sectioning otolith preparation technique, as Stevens and Kalish (1998) concluded that this approach gave the most reliable and consistent results. Difficulty was experienced, when interpreting growth structures on the margin of etoliths collected in late April, as ring deposition appears to occur in some, but not all fish, at this time of year. Ageing of kahawai collected later than early April should therefore be avoided when sufficient otoliths are already available.

The von Bertalanffy curves derived from the last three years and all sceeper than those reported in the Annala (2003), possibly more so in East Northland. Growth estimates currently used for KAH 1 stock assessment purposes are those obtained by McKenzie et al. (1992). These estimates were derived from the more selective commercial purse seine and single travit fisheries, are therefore probably less representative than those derived from this study. Purtier, these earlier growth estimates are sex-specific, yet Bradford (1998), found little evidence for sexual dimorphism in growth rates.

The relationship between the size and abundance of kahawai kanded relative to estimates of the distance offshore, by month, was investigated using data from task Northland and the Bay of Plenty in 2001-02 and 2002-03. There is some evidence of an increase in the size of fish landed with increasing distance offshore. However, this rend may be partially influenced by fisher effects, such as the tendency for experienced fishers to fish further offshore, and not land juvenile kahawai, which are only used for live bait, when targeting larger fish. A further limitation of these results is the lack data relating to kahawai caught further offshore, especially off East Northland. The relationship between the distance offshore and the size of kahawai caught for all regions combined was not examined because region-specific length frequency distributions differ, and a suitable means of weighting these datasets together was not available. These apparent trends should therefore be interpreted cautiously.

5. Acknowledgements

We thank Matt Smith and Canaeron Walsh for their skill and care in ageing the otoliths and the numerous boat rame interviewers, most of whom took part in all three surveys. Thanks are also due to Nick Davies, who provided a thorough and constructive review of an earlier draft, and to members of the Pelagic Working Group who attended presentations on the results of the 2001 and 2002 surveys, and made plant useful comments. Funding for this project, KAH2000/01, was provided by the Ministry of Fisheries.

References

Annala, J.H.; Sullivan, K.J.; O'Brien, C.J.; Smith, N.W.McL., and Grayling, S.M. (Comps.) 2003: Report from the Fishery Assessment Plenary, May 2003: stock assessments and yield estimates. 616 p. (Unpublished report held in NIWA library, Wellington.)

Bradford, E. 1998a: Harvest estimates from the 1996 national marine recreational fishing surveys. New Zealand Fisheries Assessment Research Document 98/16 27 p. (Unpublished report held in NIWA library, Wellington.)

Bradford, E. 1998b: Unified kahawai growth parameters. NIWA Technical Report 9. 50 p.

Bradford, E. 1999: Size distribution of kahawai in commercial and recreational catches. NIWA Technical Report 61.51 p.

- Bradford, E. 2000: Feasibility of sampling the recreational fishery to monitor the kahawai stock. New Zealand Fisheries Assessment Report 2000/11. 34 p.
- Bradford, E. 2001: Further considerations on the feasibility of sampling the recreational fishery to monitor the kahawai stock. New Zealand Fisheries Assessment Report 2001/05. 27,p.
- Davies, N. M.; Walsh, C. 1995: Length and age composition of commercial snapper landings in the Auckland Fisheries Management Area 1988-94. New Zealand Fisheries Data Report No. 58. 85 p.
- Hartill, B.; Blackwell, R.; & Bradford, E. 1998: Estimation of mean fish weights from the recreational catch landed at boat ramps in 1996. NIWA Technical Report 31. 40 p.
- Hartill, B.; Cadenhead, H.; Tasker, R. and Smith, M. 2001: Monitoring the length and age composition of recreational landings of kahawai in KAH 1 in 2000-2001 Final research report Final Research Report for Ministry of Fisheries Research Project KAH2000/01 Objective 1. 11 p.
- Hartill, B.; Cadenhead, H.; Tasker, R.; Middleton, C. 2002: Monitoring the length and age composition of recreational landings of kahawai in KAH 1 in 2000-2091 and 2001-02. Final Research Report for Ministry of Fisheries Research Project KAH2009/01 Objective 1. 35 p.
- McKenzie, J. R.; Hartill, B.; Trusewich, W. 1992: A summary report on commercial kahawai market sampling in the Auckland Fisheries Management Area (1991–1992). Northern Fisheries Region Internal Report 9. 39 p.
- McKenzie, J. R.; Trusewich, W. 1996: Analysis of kahawai (Arripis trutta Family: Arripidae) commercial catch sampling from botthern New Zealand purse seine and trawl fisheries (KAH9 KAH1) between 1991-1993: Diati New Zealand Fisheries Assessment Research Document 70 p.
- Stevens, D. W.; Kalish, J. M. 1998: Validated age and growth of kahawai (Arripis trutta) in the Bay of Plenty and Tastian Bay. NIWA Technical Report 11. 33 p.
- Sylvester, T. 1993. Recreational fisheries catch per unit effort trends in the North region (1990/91). Northern Fisheries Region Internal Report No. 14. 23 p. (Unpublished report held in Ministry of Fisheries, Angkland.)

Sylvester, T. 1994. Recreational Fisheries research in the North region. Seafood New Zealand February 1994: (27-28) Appendix 1: Estimated proportions at length and c.v.s for kahawai sampled from recreational
fishers in East Northland, Hauraki Gulf and the Bay of Plenty in 2000-01, 2001-02 and 2002-03
P.i. = proportion of fish in length class.
c.v. = coefficient of variation.n = total number of fish sampled.
m.w.c.v. = mean weighted c.v.

Estimates of the proportion at length of kahawai from East Northland in 2000-01, 2001-02 and 2002-03 2002-03 2001-02 2000-01 Length P.i. P.i. P.i. (cm) C.V. C. V. C.V. 0.00 0.00 0.0000 0.00 0.0000 10 0.0000 0.0000 0.0000 0.00 0.00 0.0000 11 0.0000 0.00 0.00 12 13 0.0000 0.00 0.0000 0.0000 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 14 15 0.00 0.0000 0.00 0.00 0.0000 0.00 0.0000 0.00 0.00 0.00 0.0000 0.00 0.00 16 17 0.0000 0.00 0.00 0.0000 0.0000 0.00 0.0000 0.00 18 19 20 21 22 23 24 25 26 27 28 29 30 0.0000 0.00 0.0000 0.00 0.0000 0.0008 T.00 0.0000 0.0008 1.00 0.0000 0.00 ø.0009 0.00 0.0000 0.00 0.0009 0.0000 0.0009 0.009 0.0045 0.0034 0.0034 0.0034 0.0035 0.0055 0.71 0.00 0.0015 1.00 0.0000 0.82 1.00 0.0023 0.0008 0.40 0.0046 0.0068 0.0040 0.53 0.52 0.50 0.0065 0.43 0.0068 0.44 0.31 0.35 0.46 0.50 0.0048 0.0032 044 0.32 0.33 0.27 0.22 0.0091 0/46 0.0091 -0.0061 -0.0091 0.0091 -0.0159 0.47 0.50 0.51 0.38 0.0060 0.0097 0.0112 33333356789012234456789055555555856 0.0129 0.35 0.31 0.42 0.0069 0.0186 0.20 0.17 0.17 0.28 0.0112 0.0234 027 022 0.0243 0.23 0.0215 0.0339 0.0212 0.0396 0.18 0.0517 0.15 0.0250 Q.24 0.0534 0.18 0.0395 0.0120 0.0120 0.0120 0.0120 0.0275 0.0275 0.0275 0.16 0.23 0.0517 0.17 0.0379 0.0323 0.18 0.23 0.0301 0.19 0.21 0.0250 0.18 0.0379 Q (page 0.22 0.0370 0.17 0.0412 0.0404 0.17 0.0233 0.19 0.0587 0.0460 0.0412 0.0476 0.13 0.20 0.21 0.15 0.0198 0.14 0.0224 0.0478 0.0474 0.0457 0.0422 0.0577 0.12 0.14 0.14 0.15 0.13 0.0781 0.0766 0.0797 0.0690 0.0429 0.0464 0.15 0.10 0.15 0.14 0.14 0.10 0.13 0.11 0.11 0.12 0.12 0.14 0.15 0.0468 0.0835 .15 .15 0.11 0.13 0.0655 Q 0.15 0.15 0.15 0.17 0.0486 0.0732 6.0404 0.0432 0.13 0.0500 0.0322 0.0323 0.0404 0.0266 0.0274 0.0136 0.0137 0.0417 0.13 0.0439 0.0281 0.0319 0.19 0.17 0.0250 0.18 0.0189 0.21 0.20 0.20 0.24 0.0212 0.0172 0.22 0.0137 0.0095 0.35 0.33 0.0121 0.47 0.26 0.0068 0.0052 0.0061 0.35 0.0017 0.58 0.0023 0.0015 0.0032 0.50 0.0017 0.70 1.00 0.0017 0.71 0.0008 1.00 0.00 0.71 0.0000 0.0009 0.0000 0.0008 0.00 61 0.0008 1.00 0.0016 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.0000 64 65 66 7 8 69 0.0008 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0008 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.00 0.00 0.0000 0.0000 0.00 0.0000 0.0000 70 0.0000 1 318 1 171 1 239 n 0.17 0.17 0.18 m.w.c.v.

23

Appendix 1 - continued:

ŧ

24

•

Appendix 1 - Estimates of	- continued: the proporti	on at length (of kahawai from th	e Bay of Plei	nty in 2000–01, 2001–02 a	nd 2002-03	\land
Length	2	000-01	••••••	2001-02	2002-	<u>-03</u>	$\overrightarrow{\mathcal{C}}$
(cm)	P.i.	C. V.	P.i.	C.V.	P.i. ş	\times	
10	0.0000	0.00	0.0000	0.00	0.0000	.bq`< \>	$\sim \bigcirc$
11	0.0000	0.00	0.0000	0.00	0.0000	.00	10.5
12	0.0000	0.00	0.0000	0.00	$0.0000 \checkmark 10$		$\langle v \rangle^{\sim}$
13	0.0000	0.00	0.0000	0.00	0.0000 0	× </td <td>$\mathbf{\nabla}$</td>	$\mathbf{\nabla}$
14	0.0000	0.00	0.0000	0.00	8,000,0	.00 ()	
16	0.0000	0.00	0.0000	0.00	2.0009 1	.00	7
17	0.0000	0.00	0.0000	0.00	0.6009 1	.02	
18	0.0000	0.00	0.0000	0.00			
19	0.0000	1.00	0.0000	0.00			
20	0.0009	0.00	0.0000	0.00		80	
22	0.0000	0.00	0.0014	0.7)) 0.0009/~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	.00>	
23	0.0009	1.00	0.0020	0.74	0.0009	90	
24	0.0027	0.75	0.0027	(0.01)	0.0040 0	14) 27	
25	0.0030	0.74	0.0034	120		.43	
20	0.0054	0.41	0.001	69.6	0 (85094)	.33	
28	0.0045	0.66	0.0041	2.47	0.0835 0	49	
29	0.0109	0.35	0.0027			.37	
30	0.0181	0.27	0.0008	0.37		47 40	
31	0.0217	0.22	0.0095	0.26	0.0071 0	34	
33	0.0236	0.22	0.9192	8.27	0.0221 0.	.24	
34	0.0245	0.22	/ / 0.0142	(0,27)	0.0282 0	.21	
35	0.0272	0.19				20	
36	0.0263	0.25		/118	0.0247 0.	20	
3/	0.0290	0.19	0.0502	\ \0.17	0.0265 0	.19	
39	0.0371	(0.12 C	20346	0.14	0.0318 0.	17	
40	0.0281	1973	(0.6432	> 0.13	0.0477 0.	.14	
41	0.0317	0.12	0.6454	0.13	0.0415 0.	14	
42	0.0308	2 443	0.0542	0.12	0.0335 0.	20	
43 44	0.0462	8.15	0.0373	0.13	0.0397 0.	16	
45	Q.0480	0.14	0.0454	0.14	0.0415 0.	.15	
46 🦯	0.0602	0.12	0.0515	0.11	0.0450 0.	.15	
47 //	0.0543	0.12	0.0096	0.10	0,0336 0.	11	
	10562	$\langle 0,12 \rangle$	0.0610	0.11	0.0759 0.	10	
59	0.0652		0.0738	0.10	0.0812 0.	10	
K/~	× 0.0616/ (~પ્રરુ	0.0637	0.10	0.0565 0.	12	
<u> </u>	0.0462	0,15	0.0454	0.12	0.0503 0.	14	
5^3	A DOLLAR		0.0210	0.19	0.0168 0	24	
55	10.0245	> 0.19	0.0136	0.23	0.0106 0.	29	
56 /	0.0154	0.26	0.0061	0.33	0.0044 0.	45	
57 //	0.00001	0.34	0.0014	0.70	0.0026 0.	58	
58	0.0945	0.53	0.0041	0.41	0.0009 1.	00 71	
	0.0027	0.71	0.0007	1.00	0.0000 0.	00	
6ĭ	0.0000	0.00	0.0000	0.00	0.0009 1.	00	
	0.0000	0.00	0.0007	1.00	0.0000 0.	.00	
63	0.0000	0.00	0.0007	1.00	0.0000 0.	00	
64	0.0000	0.00	0.0007	0.00	0.0000 0.	00	
66	0.0000	0.00	0.0000	0.00	0.0000 0.	00	
67	0.0000	0.00	0.0000	0.00	0.0000 0.	00	
68	0.0000	0.00	0.0000	0.00	0.0000 0.	00	
69	0.0000	0.00	0.0000	0.00	0.0000 0.	00	
70	0.0000	0.00	0.0000	0.00	0.0000 0.	~~	
n	1 104		1 476		1 133		
m.w.c.v.		0.18		0.15	0.	17	

.*

.

. ...

.....

(

25

.

Appendix 2: Estimated proportions at age and c.v.s of kahawai sampled from recreational Appendix 2: Estimated proportion r_{1} and the Bay of Plenty in 2000–01, 2001–02 and 2002–03 fishers in East Northland, Hauraki Gulf and the Bay of Plenty in 2000–01, 2001–02 and 2002–03 class.

.

P.j.	=	proportion of fish in age cla
c.v.	ŧ	coefficient of variation.

(

n = total number of fish sampled.m.w.c.v. = mean weighted c.v.

an la sua a veza

and all the second standard and the second statements and the second statem

Age	2	200001		2001-02		2002
(years)	P.j.	C.V.	P.j.	C. Y.	P.i	$\nabla \wedge$
1	0.0000	0.00	0 0000	0.00	0,000	
1	0.0000	0.00	0.0241	0.00	06430	
2	0.0223	0.06	0.1780	0.08	0.0750	$\sum 0.1$
2	0.2511	0.07	0.2663	0.00	0.1500	V 0.0
4	0.1182	0.12	0.1430	0.11	1	
5	0 1091	0.12	0.1426	0.11		
ž	0.0537	0.18	0.0713	0.15	0.1021	
8	0.0221	0.29	0.0410	0.21 <	0.0832	((0))
õ	0.0287	0.26	0.0222	0.28	0.0228	102
10	0.0279	0.25	0.0334	0/2/2	0.92,94	0.3
11	0.0281	0.23	0.0327	<u>,</u> 6.22)	8,9236	\mathbf{V} 0.3
12	0.0304	0.23	0.0276	$\langle h_2 \rangle$	/ x6.007x	0.5
13	0.0230	0.25	0.0070 2		(nQ.01Q3 V	0.4
14	0.0127	0.38	0.0062	0.46	\ \0.0140	0.3
15	0.0032	0.74	0.0008	8,00	() \0(0000	0.00
16	0.0013	1.01	0,0000	10.00	0000.0	0.00
17	0.0039	0.75	0.0000	// 0.00 🔨	1/1/0.0000	0.00
18	0.0000	0.00	0.0009	0.00	0.0000	0.00
19	0.0000	0.00			0.0000	0.00
>19	0.0000	0.00	9.000		✓ 0.0000	0.00
n	517		∕ <u>,</u> ∖∕∕526	())		504
••		- 12 K	$// \mathcal{N}$	()) 、		
m.w.c.v.		0.13	$\langle I \rangle \wedge$			0.13
		(\mathcal{C})	\checkmark \Box	\sim		
			I ∧*	· ,		
		へて	~ 111	>		
		ID.	$\langle Z \rangle$	-		
Estimates	of the propert	tion at age of k	ahawaj from the	Hauraki Gulf	in 2000–01. 2001–0	2 and 200
Estimates	of the proport	tion at age of k	ahawai from the l	Hauraki Gulf	in 2000–01, 2001–0	2 and 200
Estimates of	of the propor	tion at age of k	ahawai from the l	Hauraki Gulf 2001-02	in 2000–01, 2001–0	2 and 200
Estimates (Age (vears)	of the property	tion at age of k 2060-01 c.v.	ahawai from the p_{j}	Hauraki Gulf 2001–02 c.v.	in 2000–01, 2001–0 	2 and 200 2002-03
Estimates Age (years)	of the proper	tion at age of k 2000-01 <i>c.v.</i>	ahawai from the l	Elauraki Gulf 2001-02 c.v.	in 2000–01, 2001–0 	2 and 200 2002-03 c.v.
Estimates of Age (years)	of the proport	tion at age of k <u>2060-01</u> <i>c.v.</i> 0,23	ahawai from the $\frac{1}{P.j.}$	Elauraki Gulf 2001–02 c.v. 0.71	in 2000–01, 2001–0 	2 and 200 2002-03 c.v. 0.00
Age (years)	of the proport <i>P.j.</i> 0.0224 0.1029	tion at age of k <u>2000-01</u> c.v. 0.12	ahawai from the 1 <i>P.j.</i> 0.0025 0.0581 0.4186	Hauraki Gulf <u>2001–02</u> c.v. 0.71 0.17 0.65	in 2000–01, 2001–0 <i>P.j.</i> 0.0000 0.1618	2 and 200 2002–03 c.v. 0.00 0.08
Age (years) 1 2 3	of the property P.j. 0.0224 0.1629 0.5377	tion at age of k 2000-01 C.V. 0.12 0.12 0.12 0.12	ahawai from the 1 <i>P.j.</i> 0.0025 0.0581 0.4188 0.1925	Hauraki Gulf <u>2001–02</u> c.v. 0.71 0.17 0.05 0.05	in 2000–01, 2001–0 <i>P.j.</i> 0.0000 0.1618 0.4677	2 and 200 2002–03 c.v. 0.00 0.08 0.03
Age (years) 1 2 3	of the property <i>P.j.</i> 0.0224 0.1029 0.05377 0.1548	tion at age of k 2000-01 c.v. 0.12 0.12 8.03 8.10	ahawai from the l <i>P.j.</i> 0.0025 0.0581 0.4188 0.1835 0.1057	Hauraki Gulf 2001–02 c.v. 0.71 0.17 0.05 0.09 0.13	in 2000–01, 2001–0 <i>P.j.</i> 0.0000 0.1618 0.4677 0.1498 0.0514	2 and 200 2002-03 c.v. 0.00 0.08 0.03 0.10
Age (years)	of the proport <i>P.j.</i> 0.0224 0.1029 0.1548 0.0748 0.0129	tion at age of k 2000-01 c.v. 0.12 0.12 0.12 0.12 0.12 0.12	ahawai from the l <i>P.j.</i> 0.0025 0.0581 0.4188 0.1835 0.1067 0.0675	Hauraki Gulf 2001-02 c.v. 0.71 0.17 0.05 0.09 0.13 0.17	in 2000–01, 2001–0 <i>P.j.</i> 0.0000 0.1618 0.4677 0.1498 0.0514 0.0514	2 and 200 2002–03 c.v. 0.00 0.08 0.03 0.10 0.21
Estimates Age (years) 1 2 3 4	of the proport <i>P.j.</i> 0.0274 0.1029 0.5377 0.1548 0.0748 0.0130	tion at age of k 2060-01 C.V. 0.12 0.1	ahawai from the l <i>P.j.</i> 0.0025 0.0581 0.4188 0.1835 0.1067 0.0615 0.0591	Hauraki Gulf 2001–02 c.v. 0.71 0.17 0.05 0.09 0.13 0.17 0.17	in 2000–01, 2001–0 <i>P.j.</i> 0.0000 0.1618 0.4677 0.1498 0.0514 0.0430 0.0207	2 and 200 2002-03 c.v. 0.00 0.08 0.03 0.10 0.21 0.25
Estimates Age (years) 1 2 3 4 6 7	of the proport <i>P.j.</i> 0.0224 0.16729 0.5377 0.1548 0.0748 0.0137 0.0137 0.020	tion at age of k 2060-01 C.V. 0.12 0.1	ahawai from the 1 <i>P.j.</i> 0.0025 0.0581 0.4188 0.1835 0.1067 0.0615 0.0591 0.0313	Hauraki Gulf 2001–02 6.V. 0.71 0.05 0.09 0.13 0.17 0.17 0.17 0.27	in 2000–01, 2001–0 <i>P.j.</i> 0.0000 0.1618 0.4677 0.1498 0.0514 0.0430 0.0397 0.010	2 and 200 2002-03 c.v. 0.00 0.08 0.03 0.10 0.21 0.25 0.26 0.26
Estimates Age (years) 1 2 3 4 5 6 7 8	of the property P.j. 0.0224 0.1729 0.1548 0.0746 0.0746 0.0748 0.0748 0.020 6.0070	tion at age of k 2000-01 c.v. 0.12 0.1	ahawai from the 1 <i>P.j.</i> 0.0025 0.0581 0.4188 0.1835 0.1067 0.0615 0.0591 0.0313 0.0080	Hauraki Gulf 2001–02 c.v. 0.71 0.17 0.05 0.09 0.13 0.17 0.17 0.17 0.27 0.52	in 2000–01, 2001–0 <i>P.j.</i> 0.0000 0.1618 0.4677 0.1498 0.0514 0.0430 0.0397 0.0210 0.0177	2 and 200 2002-03 c.v. 0.00 0.08 0.03 0.10 0.21 0.25 0.26 0.30 0.30 0.26 0.30
Estimates Age (years) 1 2 3 4 5 6 7 8 9	of the property P.j. 0.0224 0.10729 0.5377 0.0548 0.0748 0.0748 0.0748 0.0748 0.0748 0.0748 0.029 0.029 0.0214	tion at age of k 2000-01 c.v. 0.12 0.1	ahawai from the 1 <i>P.j.</i> 0.0025 0.0581 0.4188 0.1835 0.1067 0.0615 0.0591 0.0313 0.0080 0.0080	Hauraki Gulf 2001–02 c.v. 0.71 0.17 0.05 0.09 0.13 0.17 0.17 0.27 0.52 0.50	in 2000–01, 2001–0 <i>P.j.</i> 0.0000 0.1618 0.4677 0.1498 0.0514 0.0430 0.0397 0.0210 0.0177 0.0006	2 and 200 2002-03 c.v. 0.00 0.08 0.03 0.10 0.21 0.25 0.26 0.30 0.36 0.36
Estimates Age (years) 1 2 3 4 6 7 8 9 10	of the property <i>P.j.</i> 0.0224 0.10729 0.5377 0.0748 0.0748 0.0748 0.0748 0.0748 0.0748 0.0748 0.0748 0.0748 0.0208 8.0070 0.0214 0.0258	tion at age of k 2000-01 c.v. 0.12 0.1	ahawai from the 1 <i>P.j.</i> 0.0025 0.0581 0.4188 0.1835 0.1067 0.0615 0.0591 0.0313 0.0080 0.0098 0.0164	Hauraki Gulf 2001–02 c.v. 0.71 0.17 0.05 0.09 0.13 0.17 0.17 0.17 0.27 0.52 0.50 0.35	in 2000–01, 2001–0 <i>P.j.</i> 0.0000 0.1618 0.4677 0.1498 0.0514 0.0430 0.0397 0.0210 0.0177 0.0096 0.0119	2 and 200 2002-03 c.v. 0.00 0.08 0.03 0.10 0.21 0.25 0.26 0.30 0.36 0.55 0.44
Estimates Age (years) 1 2 3 4 6 7 8 9 10 11	of the proport <i>P.j.</i> 0.0224 0.1629 0.5377 0.1548 0.0748 0.0748 0.0748 0.0748 0.0138 0.0128	tion at age of k 2000-01 c.v. 0.12 0.12 0.12 0.10 0.46 1.07 0.45 0.52 0.32 0.49	ahawai from the 1 <i>P.j.</i> 0.0025 0.0581 0.4188 0.1835 0.1067 0.0615 0.0591 0.0313 0.0080 0.0098 0.0164 0.0083	Hauraki Gulf 2001–02 c.v. 0.71 0.17 0.05 0.09 0.13 0.17 0.17 0.17 0.27 0.52 0.50 0.35 0.53	in 2000–01, 2001–0 <i>P.j.</i> 0.0000 0.1618 0.4677 0.1498 0.0514 0.0430 0.0397 0.0210 0.0177 0.0096 0.0119 0.0076	2 and 200 2002–03 c.v. 0.00 0.08 0.03 0.10 0.21 0.25 0.26 0.30 0.36 0.55 0.44 0.64
Estimates Age (years) 1 2 3 4 5 6 7 8 9 10 11 12	of the property <i>P.j.</i> 0.0224 0.1548 0.0748 0.0437 0.0748 0.0437 0.0748 0.0437 0.0748 0.0437 0.0748 0.0128 0.0268 0.024	tion at age of k 2000-01 c.v. 0,12 0,12 0,12 0,14 0,14 0,46 1.07 0,45 0,52 0,32 0,49 0,83	ahawai from the 1 <i>P.j.</i> 0.0025 0.0581 0.4188 0.1835 0.1067 0.0615 0.0591 0.0313 0.0080 0.0098 0.0164 0.0083 0.0084	Hauraki Gulf 2001–02 c.v. 0.71 0.17 0.05 0.09 0.13 0.17 0.17 0.17 0.27 0.52 0.50 0.53 0.55	in 2000-01, 2001-0 <i>P.j.</i> 0.0000 0.1618 0.4677 0.1498 0.0514 0.0430 0.0397 0.0210 0.0177 0.0096 0.0119 0.0076 0.0113	2 and 200 2002–03 c.v. 0.00 0.08 0.03 0.10 0.25 0.26 0.30 0.36 0.35 0.44 0.64
Age (years) 1 2 3 4 6 7 8 9 10 11 12 12	of the propert <i>P.j.</i> 0.0224 0.1529 0.1548 0.0748 0.0748 0.0138 0.0148 0.0128 0.0149	tion at age of k 2000-01 c.v. 0,23 0,12 0,1	ahawai from the l <i>P.j.</i> 0.0025 0.0581 0.4188 0.1835 0.1067 0.0615 0.0591 0.0313 0.0080 0.0098 0.0164 0.0083 0.0084 0.0084 0.0207	Hauraki Gulf 2001–02 c.v. 0.71 0.17 0.05 0.09 0.13 0.17 0.17 0.17 0.27 0.52 0.50 0.35 0.53 0.56 0.33	in 2000-01, 2001-0 <i>P.j.</i> 0.0000 0.1618 0.4677 0.1498 0.0514 0.0430 0.0397 0.0210 0.0177 0.0096 0.0119 0.0076 0.0113 0.0029	2 and 200 2002-03 c.v. 0.00 0.03 0.10 0.21 0.25 0.26 0.30 0.30 0.30 0.30 0.30 0.35 0.44 0.64 0.49 1.02
Age (years) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 14	of the property <i>P.j.</i> 0.0224 0.1629 0.53377 0.1548 0.0748 0.0748 0.0748 0.0748 0.0748 0.070 0.013 0.0128 0.0149 0.015	tion at age of k 2000-01 c.v. 0.23 0.12 0.52 0.52 0.52 0.52 0.50 0.50 0.50 0.52 0.50 0.5	ahawai from the 1 <i>P.j.</i> 0.0025 0.0581 0.4188 0.1835 0.1067 0.0615 0.0591 0.0313 0.0080 0.0098 0.0164 0.0083 0.0084 0.0207 0.0227	Hauraki Gulf 2001–02 c.v. 0.71 0.17 0.05 0.09 0.13 0.17 0.17 0.27 0.52 0.50 0.35 0.53 0.56 0.33 1.02	in 2000-01, 2001-0 P.j. 0.0000 0.1618 0.4677 0.1498 0.0514 0.0430 0.0397 0.0210 0.0117 0.0096 0.0119 0.0076 0.0113 0.0029 0.0011	2 and 200 2002-03 c.v. 0.00 0.08 0.03 0.10 0.25 0.26 0.30 0.36 0.36 0.36 0.35 0.44 0.49 1.03 1.03 1.00 0.55 0.44 0.49 1.03 1.00 0.55 0.44 0.49 0.49 0.04 0.49 0.04 0.49 0.04 0.04 0.05 0.44 0.49 0.04 0.49 0.04 0.04 0.05 0.44 0.49 0.04 0.04 0.05 0.44 0.49 0.04 0.49 0.04 0.05 0.44 0.49 0.04 0.49 0.04 0.05 0.44 0.49 0.04 0.49 0.04 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.05 0.04 0.05 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.03 0.03 0.03 0.03 0.03 0.05 0.03 0.05 0.04 0.55 0.44 0.45 0.44 0.45 0.44 0.45 0.55 0.44 0.55 0.44 0.55 0.44 0.55 0.44 0.55 0.44 0.55 0.44 0.55
Estimates Age (years) 1 2 3 4 5 6 7 8 9 10 11 12 14 15	of the propert <i>P.j.</i> 0.0224 0.1029 0.5377 0.1548 0.0748 0.0748 0.0748 0.0748 0.0748 0.0748 0.0748 0.070 0.0103 0.0114 0.0268 0.0128 0.0048 0.0015 0.000	tion at age of k 2000-01 c.v. 0.12 0.52 0.50 0.5	ahawai from the 1 <i>P.j.</i> 0.0025 0.0581 0.4188 0.1835 0.1067 0.0615 0.0591 0.0313 0.0080 0.0098 0.0164 0.0083 0.0084 0.0028 0.0028 0.0028 0.0028	Hauraki Gulf 2001–02 C.V. 0.71 0.17 0.05 0.09 0.13 0.17 0.17 0.27 0.52 0.50 0.35 0.53 0.56 0.33 1.02 0.00	in 2000-01, 2001-0 P.j. 0.0000 0.1618 0.4677 0.1498 0.0514 0.0430 0.0397 0.0210 0.0177 0.0096 0.0119 0.0076 0.0113 0.0029 0.0011 0.0000	2 and 200 2002-03 c.v. 0.00 0.08 0.03 0.10 0.21 0.25 0.26 0.30 0.36 0.36 0.35 0.44 0.49 1.03 1.09 0.00
Estimates Age (years) 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17	of the property P.j. 0.0224 0.1729 0.53377 0.1548 0.0748 0.0748 0.0748 0.0748 0.0137 0.00128 0.0048 0.0149 0.0015 0.0000 0.0000	tion at age of k 2000-01 c.v. 0.22 0.12 0.52 0.52 0.52 0.50 0.45 0.50 0.45 0.50 0.50 0.50 0.45 0.50 0.5	ahawai from the 1 <i>P.j.</i> 0.0025 0.0581 0.4188 0.1835 0.1067 0.0615 0.0591 0.0313 0.0080 0.0080 0.0080 0.0083 0.0084 0.0028 0.00028 0.0000 0.0015	Hauraki Gulf 2001–02 c.v. 0.71 0.17 0.05 0.09 0.13 0.17 0.17 0.27 0.52 0.50 0.35 0.53 0.53 0.56 0.33 1.02 0.00 1.07	in 2000-01, 2001-0 P.j. 0.0000 0.1618 0.4677 0.1498 0.0514 0.0430 0.0397 0.0210 0.0177 0.0096 0.0119 0.0076 0.0113 0.0029 0.0011 0.0000	2 and 200 2002-03 c.v. 0.00 0.08 0.03 0.10 0.21 0.25 0.26 0.30 0.36 0.35 0.44 0.49 1.03 1.09 0.00 1.00
Estimates Age (years) 1 2 3 4 6 7 8 9 10 11 12 14 16 17 18	of the property P.j. 0.0224 0.1729 0.5377 0.0748 0.0748 0.0748 0.0137 0.0020 6.0070 0.0114 0.0128 0.0128 0.0149 0.0000 0.0000 0.0000	tion at age of k 2000-01 c.v. 0.22 0.12 0.32 0.32 0.45 0.50 0.52 0.52 0.50 0.50 0.50 0.50 0.52 0.50 0.00	ahawai from the 1 <i>P.j.</i> 0.0025 0.0581 0.4188 0.1835 0.1067 0.0615 0.0591 0.0313 0.0080 0.0080 0.0080 0.0083 0.0084 0.0028 0.00084 0.0028 0.0000 0.0015 0.0000	Hauraki Gulf 2001–02 c.v. 0.71 0.17 0.05 0.09 0.13 0.17 0.17 0.27 0.52 0.50 0.35 0.53 0.53 0.56 0.33 1.02 0.00 1.07 0.00	in 2000-01, 2001-0 P.j. 0.0000 0.1618 0.4677 0.1498 0.0514 0.0430 0.0397 0.0210 0.0177 0.0096 0.0119 0.0029 0.0011 0.0000	2 and 200 2002-03 c.v. 0.00 0.08 0.03 0.10 0.21 0.25 0.26 0.30 0.36 0.35 0.44 0.49 1.03 1.09 0.00 1.09 0.00
Estimates Age (years) 1 2 3 4 6 7 8 9 10 11 12 14 16 16 17 18 19	of the property P.j. 0.0224 0.1029 0.5377 0.0748 0.0137 0.0748 0.0137 0.0138 0.0138 0.0128 0.0149 0.0149 0.0015 0.0000 0.0000 0.0000	tion at age of k 2000-01 c.v. 0.23 0.12 8.03 8.04 0.46 1.07 0.77 0.45 0.52 0.32 0.49 0.83 0.50 1.12 0.00 0.00 0.00 0.00	ahawai from the 1 P.j. 0.0025 0.0581 0.4188 0.1835 0.1067 0.0615 0.0591 0.0313 0.0080 0.0098 0.0164 0.0083 0.0084 0.0027 0.0028 0.0000 0.0015 0.0000	Hauraki Gulf 2001–02 c.v. 0.71 0.17 0.05 0.09 0.13 0.17 0.17 0.52 0.50 0.35 0.53 0.56 0.33 1.02 0.00 1.07 0.00 0.00 0.00	in 2000-01, 2001-0 P.j. 0.0000 0.1618 0.4677 0.1498 0.0514 0.0430 0.0397 0.0210 0.0177 0.0096 0.0119 0.0076 0.0113 0.0029 0.0011 0.0000 0.0001 0.0000	2 and 200 2002-03 c.v. 0.00 0.08 0.03 0.10 0.21 0.25 0.26 0.30 0.36 0.55 0.44 0.64 0.64 0.49 1.03 1.09 0.00 0.00 0.00 0.04
Age (years) 1 2 3 4 6 6 7 8 9 10 11 11 12 14 16 16 17 18 19 >19	of the property <i>P.j.</i> 0.0224 0.1629 0.5377 0.1548 0.0748 0.0748 0.0137 0.0748 0.0137 0.0268 0.0128 0.0048 0.0149 0.0015 0.0000 0.0000 0.0000 0.0000	tion at age of k 2000-01 c.v. 0.12 8.03 8.10 6.10 0.46 1.07 0.77 0.45 0.52 0.32 0.49 0.83 0.50 1.12 0.00 0.00 0.00 0.00 0.00	ahawai from the 1 P.j. 0.0025 0.0581 0.4188 0.1835 0.1067 0.0615 0.0591 0.0313 0.0080 0.0098 0.0164 0.0083 0.0084 0.0027 0.0028 0.0000 0.0000 0.0000 0.0000	Hauraki Gulf 2001-02 c.v. 0.71 0.17 0.05 0.09 0.13 0.17 0.17 0.27 0.52 0.50 0.35 0.53 0.56 0.33 1.02 0.00 1.07 0.00 0.00 0.00 0.00 0.00	in 2000-01, 2001-0 <i>P.j.</i> 0.0000 0.1618 0.4677 0.1498 0.0514 0.0430 0.0397 0.0210 0.0177 0.0096 0.0119 0.0076 0.0113 0.0029 0.0011 0.0000 0.0001 0.0000 0.0000	2 and 200 2002-03 c.v. 0.00 0.08 0.03 0.10 0.25 0.26 0.30 0.36 0.55 0.44 0.64 0.64 0.49 1.03 1.09 0.00 1.09 0.00
Age (years) 1 2 3 4 6 6 7 8 9 10 11 12 14 15 16 17 18 19 >19	of the property P.j. 0.0224 0.1629 0.5377 0.1548 0.0748 0.0748 0.0137 0.0748 0.0137 0.0748 0.0138 0.0149 0.0015 0.0000 0.0000 0.0000 0.0000	tion at age of k 2000-01 c.v. 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.46 1.07 0.77 0.45 0.52 0.32 0.32 0.32 0.32 0.32 0.32 0.50 1.12 0.00 0.00 0.00 0.00	ahawai from the 1 P.j. 0.0025 0.0581 0.4188 0.1835 0.1067 0.0615 0.0591 0.0313 0.0080 0.0098 0.0164 0.0083 0.0084 0.0008 0.0005 0.0000 0.0000 0.0000	Hauraki Gulf 2001-02 c.v. 0.71 0.17 0.05 0.09 0.13 0.17 0.17 0.27 0.52 0.50 0.35 0.53 0.53 0.56 0.33 1.02 0.00 1.07 0.00 0.00 0.00	in 2000-01, 2001-0 <i>P.j.</i> 0.0000 0.1618 0.4677 0.1498 0.0514 0.0430 0.0397 0.0210 0.0177 0.0096 0.0119 0.0076 0.0113 0.0029 0.0011 0.0000 0.0001	2 and 200 2002-03 c.v. 0.00 0.03 0.10 0.25 0.26 0.30 0.36 0.35 0.44 0.49 1.03 1.09 0.00 1.09 0.00 0.00 0.00
Age (years) 1 2 3 4 6 6 7 8 9 10 11 12 14 15 16 17 18 19 >19 n	of the property P.j. 0.0224 0.1629 0.5377 0.1548 0.0748 0.0137 0.0748 0.013 0.013 0.013 0.013 0.013 0.0149 0.0015 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	tion at age of k 2000-01 c.v. 0.12 0.12 0.12 0.12 0.12 0.16 0.46 1.07 0.45 0.52 0.32 0.32 0.49 0.49 0.49 0.49 0.50 1.12 0.00 0.00 0.00 0.00	ahawai from the 1 P.j. 0.0025 0.0581 0.4188 0.1835 0.1067 0.0615 0.0591 0.0313 0.0080 0.0098 0.0164 0.0083 0.0084 0.0207 0.0028 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Hauraki Gulf 2001-02 c.v. 0.71 0.17 0.05 0.09 0.13 0.17 0.17 0.27 0.52 0.50 0.35 0.53 0.56 0.33 1.02 0.00 1.07 0.00 0.00 0.00	in 2000-01, 2001-0 <i>P.j.</i> 0.0000 0.1618 0.4677 0.1498 0.0514 0.0430 0.0397 0.0210 0.0177 0.0096 0.0119 0.0076 0.0113 0.0029 0.0011 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 527	2 and 200 2002-03 c.v. 0.00 0.03 0.10 0.21 0.25 0.26 0.30 0.30 0.30 0.30 0.35 0.44 0.49 1.03 1.09 0.00 1.09 0.00 0.00 0.00

26

٩.,

1

*** * * *****

Appendix 3: Age-length keys derived from otolith samples collected from recreational fishers from East Northland in 2000-01, 2001-02 and 2002-03.

~

517

and a sub-

. .

																		\wedge			/	$\langle \rangle$
Length (cm)	I	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	K	L.	19 (V	ears) >19	No.	\backslash
10	0	0	D	0	0	0	0	0	0	0	0	0	0	0	0	0	50	\searrow	/0	o ($\overline{0}$	γ
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\sim	\checkmark	$\bigtriangledown_{0}^{\sigma}$	0	\sim °	Ve J)
12	0	ő	õ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	Ă	Χŏ	\searrow	ŏ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	to	No No	
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\sim	18	Ň	0	0	\¥	\sim_{0}	
15	0	0	0	0	0	Ő	ŏ	0	ŏ	Ö	ŏ	ŏ	Ö	॑॔	νŏ	0	0	\sim	\searrow	Y	0	
17	ŏ	ŏ	Ō	Ō	0	0	0	0	0	0	0	0	X	Q	5e	0	04	4	20	ŏ	ŏ	
18	0	0	0	0	0	0	0	0	0	0	0	0 0/	\nearrow	\mathbf{X}		0	(the	X	So	0	0	
20	0	ŏ	ŏ	ŏ	Ö	Ő	ŏ	ŏ	ŏ	ŏ	ŏ		Ŋ	$^{\circ}$	> ö	۸Ŏ	(ů))))	ŏ	ŏ	ŏ	
21	0	0	0	0	0	0	0	0	0	0	2	\sim	\searrow	/	o c	\sim	10		0	0	0	
22 23	0	0	Ö	ŏ	Ő	ŏ	ŏ	ŏ	ŏ	ŏ	$\langle \langle \rangle$	्रु) 🏹	, o	/2	$\langle \rangle$	\searrow	ŏ	0	0	0	
24	Ō	0	1.00	0	0	0	0	0	0	ĸ) o	X	/ 0	Å	\sim δ	V	Č	0	0	0	2	
25	0	0.25	1.00	0	0	0	0	0	0	(a	2°	\sim	Q	1	50	>0	0	0	0	0	2	
27	ŏ	0.50	0.50	0	0	0	0	0	୍	R	0	´ 0	Ŷ	1	$\mathcal{V}_{\mathcal{O}}$	Ý ó	Ő	Ő	Õ	ŏ	2	
28	0	0.50	0.50	0	0	0	0	~ ^<	\sim	12	\sim_0°	2	$\sum_{i=1}^{n}$	N &	\sim	· 0	0	0	0	0	2	
29 30	ŏ	0.33	0.50	0.17	Ő	ō	Ō	Ŏ	R	Ľ	Ō	્રે	S.	?)§	Ő	ō	ō	ŏ	ŏ	ŏ	6	
31	0	0.14	0.86	0	0	0	1	- d	0	- 0 0	- X	\bigcirc	\sim	}`0	0	0	0	0	0	0	7	
32 33	0	0.10	0.91	0.09	ŏ	ŏ,	<u> (</u>)) ŏ	ě	~ð	\sim	\sim	Ő	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	10	
34	Ó	0	0.76	0.24	0	X	\sim	X	0	(8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\sqrt{2}$	0	0	0	0	0	0	0	0	21	
35 36	0	0	0.86	0.09	0.05-	\searrow	(%)	> 0	ر کر	>\%	رەك	/ 0	ŏ	ŏ	ŏ	0	ŏ	0	0	0	13	
37	Ŏ	Ó	0.65	0.29	9.95	~ ?	Č٨,	0	< 🎸	\bigtriangledown	Ś	0	0	0	0	0	0	0	0	0	17	
38	0	0	0.65	0.35	0.10	as)	0	~ হ্ব	X	Sŏ	ő	ő	ŏ	Ő	ō	0	0	0	0	0	20 20	
40	Ő	Ő	0.11	6.68	016	-0:05	~	-	78	∑°	0	0	0	0	0	0	0	0	0	Ö	19	
41	0	0	0.12 200	0.88	623	0.14	0.05	1	0	0	0	0	0	. 0	0	0	0	0	0	0	25 22	
43	ŏ	ě	6.95	λd	0.24	0.10	o)	<u>\</u> }	∕ °	0	0	0	0	0	0	0	0	Ó	Ö	Ō	21	
44	0	0	0.16	A5	0.21	6.11 Gai	0.02	- VO - O	0	0	0	0	0	0	0	. 0 . 0	0	0	0	0	19 20	
43 46	<u>ر</u> لاً	Ň	19	0.22	930	0.90	0.09	Ó	0	0	0	0	Ó	0	0	- 0	ō	Ō	ŏ	ŏ	23	
47	//>	\sim	\mathcal{N}	0.18	835	~0.18 >0.34>	0.17	0.05	0.05	0.03	0	0	0	0	0	0	· 0	0	0	0	22	
49	\bigvee	Ň	ŏ	ক্ষ	017	0.13	0.20	0.07	0.20	0	0.07	Ō	Ō.	Ō	Ō	ō	ō	õ	ŏ	ŏ	15	
20	Γ\S	<u>/ 0</u>	2	-812 	818	X0.24	0.06	0.06	0.06	0.24	0.12	0.12	0.06	0.06	0	0	0	0	0	0	17	
Ss∕∕	\sim	ŷ	્રિ	0.05) ~~~	0.16	0.13	0.16	0.06	0.09	0.22	0.06	Õ	0.03	ŏ	0.03	ŏ	ŏ	ŏ	ŏ	32	
53	> º			\mathfrak{L}	/ 0	0.11	0.06	006	0.06	0.06	0.11	0.28	0.17	0.11	0	0	0.06	0	0	0	18	
54 55	Ď		$\mathbf{\dot{v}}$	> ŏ	ŏ	ŏ	0.08	0.08	0.08	0.33	0.08	0.17	0.08	ŏ	0.08	ŏ	ŏ	ŏ	ŏ	ŏ	12	
56	\mathcal{N}	Ň	0	0	0	0	0.25	0	0.13	0	0.13	0.13	0.25	0.13	0	0	0 20	0	0	0	8	
57 58	< 🗸 🖁	> \%		0	ŏ	ŏ	ŏ	ŏ	0	ŏ	ŏ	0.25	0.50	0.40	0.25	ŏ	0.20	ŏ	ŏ	ŏ	э 4	
59	18	<u> </u>	0	0	0	0	0	0	0	0	1.00	0	0	0	0	0	0	0	0	0	1	
60) / v) (0	0	Ö	ŏ	Ö	ŏ	ŏ	ŏ	ŏ	ŏ	0	ŏ	0	0	0	0	0	0	
S2	ノō	Ċ) (0	0	0	0	0	0	0	0	0	1.00	0	0	0	0	0	0	Ō	1	
63	- 0) ()) ()) ()) ()	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
65	Ő	i (Ö	0	Ō	Ő	0	0	Ó	Ó	Ő	0	0	Ő	Ő	Ō	Ō	Õ	ō	õ	õ	
66	0) (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
68	0				ŏ	ŏ	Ő	Ō	Ő	Ő	Ő	Ő	Ō	Ō	Ő	Ő	Ō	ŏ	ŏ	ŏ	õ	
69 70	0) () () (} () 0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	
62 63 64 65 66 67 68 69 70	000000000000000000000000000000000000000					000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000		000000000000000000000000000000000000000	0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	1 0 0 0 0 0 0 0 0	

Estimates of proportion of length at age for kahawai sampled from the East Northland recreational fishery, January to April 2000–01. (Note: Aged to 01/01/01)

Total

Í

28

. .

Appendix 3 - continued:

and the second state of the se

Total 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 The Total No. 10 0	Length																				,			R
10 0	(cm)	1	2	3	4	5	6	7	8	ç	> 1	0 1	1	12	13	14	15	16	ス	K		(ycars) No.	\sim
11 0	10	0	0	0	0	0	0	0	0	ç)	0	0	0	0	0	0	هر	\mathbf{X}		\checkmark	0	۵) ۵	ົ
13 0	12	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	Ő	Ċ		0	0	0	0	0	0 0/	\searrow	$\langle \langle$	$\langle \mathbf{v} \rangle$)	\sim	2 X 2	<u>)</u>
17 0	13	0	0	0	0	0	0	0	0	0) (0	0	0	0	0	Ø	V	<u>ک</u>	> 2	, ,	0/7	\gg	
16 0	15	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	Č		0	õ	0	0	Å	0	X	> 2		\sim	$^{\circ}$	S o	
1100 0	16	0	0	0	0	0	0	0	0	0		0	0	0	9/	⊘	20	ō	ō			× i	v 0) 0	
12 0	18	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	0))	0	0 0 /	$\langle \rangle$	X	\diamondsuit	, 0 0			\sum) 0	
1 0 1 0	19	0	0	0	0	0	0	0	0	0)	0	X	87	$\mathbf{\tilde{X}}$	> 0	ō	(()	\mathbf{i}	\sim	0 () () 0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	ŏ	0	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ		3	0	2	8/	2	0	\sim	\mathbb{N}	\mathcal{I}) ī	
$ \begin{array}{c} 1 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$	22 23	0	1 00	0	0	0	0	0	0	0		2	$\langle \cdot \rangle$	2)	$\widetilde{\mathcal{N}}$	0	×.	८४	1	0	Ċ		0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	24	õ	1.00	ŏ	ŏ	ŏ	õ	ŏ	ŏ	0	Ċ	$\langle \mathbf{n} \rangle$		2/	0	8	$\langle \uparrow \rangle$	\searrow	0	0	0		2	
10 10 <td< td=""><td>25 26</td><td>0</td><td>0.50</td><td>0.50</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>\mathcal{C}</td><td></td><td></td><td>6⁄</td><td>0</td><td>18</td><td>2</td><td>Š</td><td>Ö</td><td>Õ</td><td>0</td><td></td><td>2</td><td></td></td<>	25 26	0	0.50	0.50	0	0	0	0	0	0	\mathcal{C}			6 ⁄	0	18	2	Š	Ö	Õ	0		2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	27	Ō	0.67	0.33	Ö	Ō	Ő	Ō	Ő	ŏ	\sim	\mathbb{N}	\tilde{s}	ŏ	δ	.°\`	6	~ U 0	0	0	0		2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	28 29	0	0 0.60	0.40	0	0	0	0	0	$\langle \rangle$	$\langle \rangle$) M		\sim	20	\$	Vo.	0	0	Ó	Ő	0	3	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	30	0	0.20	0.80	Ó	0	0	Ö	Å	ð	\leq			9/	8	λ	0	0	0	0	0	0	5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31 32	0	0.50	0 0.88	0.50	0	0	X	\sim	$\backslash $	0		$\langle \langle \rangle$	3	\mathbf{S}	0	0	0	0	0	0	Ō	2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	33	0	0	0.86	0.14	0	2	ንእ	\searrow	7 o	2			\mathbf{S}	õ	ŏ	ŏ	0	Ő	0	0	0	8 7	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	34 35	0	0	0.92	0.08	ŏ	$\langle \mathcal{K}$	/%	\searrow	, 0 0	~ 6		2) 2	9⁄)	0 0	0	0 0	0	0	0	Ö.	Ó	8	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	36	0	0	0.91	0.09	and a	⊃¢	S /	0	ø	22	\searrow	\mathcal{O}	j,	Õ	Õ	Õ	ŏ	Ő	ő	0	0	12 11	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38	Ő	ŏ	0.00	0.23	(b	$\langle \rangle$) 🖉	Ř	Na Na	\sim	0)	0. 0	0	0	0	0	0	0	0	10	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	39 40	0	0	0.27	0,75	000	⊘⁄	0	\sim	76	\searrow	0			0	Ō	Ö	Ō	Ő	ŏ	0	Ő	13 11	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41	ŏ	Ŏ	0.35	0.65	Vo	> ő	Č	JE.	6	ン ö	0	, L) C)	0	0 -0	0	0	0	0	0	0	22	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	42 43	0	0		0.61 10.46	0.17	0.06	0	X	\geq_0°	0	0			0	0	0	0	0	Ō	Ō	ŏ	18 -	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44	.0	0	0,114	0.47	0.26	221	O'	Ý	0	Ō	Ő	Ö		Ď	ŏ	Õ	ŏ	0	0	0	0	26	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45 46	Å	\sim	۲۰ (1990)	0.26	0.19	0.21	0.05 X86	0.05 0.06	0	0	0			0	0	0	0	0	0	Ő	Ő	21	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	47 49		<u>کې کې کې ا</u>	\checkmark	0.31	012	0.94	0.14	0.03	0	0	Ő	0		5	õ	ŏ	Õ	Ö	ŏ	0	0	34 35	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	49	$\langle \rangle_{\alpha}$	/3	0	0.N	Q.27	(30	0.14	0.05	0.05	0.03	0	0))	0 0	0	0	0	0	0	0	38	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\$) <u>}</u> a	<u>У</u> °	8		(0,23) (0,24)	0.21	0.14 (0.14	0	0.09	0.09	0.05	(Ó	Ő	Õ	Ő	ŏ	ŏ	Ö	44 22	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52	\sim	ō	~6	0.04	ø.07	0.18	0.32	0.07	0.04	0.07	0.10	0.10	0.07	, ,	0	0	0	0	0	0	0	29	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	53 \ 54	>	∕⋧	X	S	/ 0 0	0.12	0.12 (0.11 (D.12 D.11	0 0.05	0.18	0.29	0.12	0.05	0.0	6	0	0	Ő	Ŏ	Õ	ŏ	25 17	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	55	0 A	$\langle \langle \rangle$	くら	> õ	Ō	0.11	0 0	D.11	0.22	0.11	0.22	0.22	0.00) (0	0	0	0	0	0	0	19	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	56 57	/%	$\sqrt{3}$	Ső	0	0	0.25	0	0	0.20 0.25	0.30	0.10 0	0.20	0.20) (0	0	0	0	0	Ő	ŏ	10	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	58		0	× 0	0	0	0	0	Ó	0	0.17	0.17	0.33	Ö	0.3	3	õ	õ	0	Ő	0	0	4	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	\$	18	≥ °	ő	ŏ	ŏ	Ö	ŏ	0	0	0	0	1.00	0) (0 0	0	0	0	0	0	Ō	i	
62 0	el (\mathcal{I}_{α}	0	0	0	0	0	0	0	0	0	Ó	Ō	Ō		0	Õ	ŏ	ŏ	õ	0	0	0	
64 0	63		Ö	ŏ	ŏ	ŏ	ŏ	ŏ	0	0	0	0	0	0		0	0	0	0	0	0	Ö	Ō	
66 0	64 65	0	0	0	0	0	0	0	0	.0	0	0	0	Ö	Ċ	5	Õ	õ	ŏ	ŏ	ŏ	0	0	
67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	66	0	0	0	.0	õ	0	0	0	0	0	0	0	0)	0 0	0 0	0	0	0	0	0	
69 0	67 68	0	0	0 `0	0	0	0	0	0	0	0	0	0	Ő	Ċ)	0	Ō	ŏ	õ	õ	0	0	
70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	69	Ő	0	Ő	õ	õ	õ	õ	õ	0	0	0	0	0	0)	0	0 0	0	0	0	0	0	
Total . 526	70	0	0	0	0	0	0	0	0	0	0	0	0	Ó	0)	0	ŏ	ŏ	ŏ	õ	0	0	
	Total																•					:	526	

Estimates of proportion of length at age for kahawai sampled from the East Northland recreational fishery, January to April 2001-02. (Note: Aged to 01/01/02)

29

· **·** · · · ·

.

Appendix 3 - continued:

(110100 1	- B																	>				$\langle \cdot \cdot \rangle$
Length (cm)	<u> </u>	2	3	4	5	6	7	8	9	10	- 11	12	13	14	15	16		78/	<u>\ge_(y</u> \>19	<u>cars)</u> >19/	No/	\sim
(011)		-	-	^	-	٥	0	n	^	۰ ۵	^	~	~	^	^	N N	//	\searrow	<u> </u>	1	~~~~	\sim
10	0	0	0	0	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	0	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	\sim	\sim	\mathcal{N}	0	- 20	へ 2))	
12	ő	ŏ	ŏ	ŏ	. 0	Ō	Ū	Ō	Ō	0	Ō	Ō	ō	ō	\mathcal{N}		ູ≫	ŏ	6	\sim	Ľ.	
13	Ō	0	0	0	0	0	0	0	0	0	0	0	0	20	\sim	্০৲	>0	0) ja (20	> õ	
14	0	0	0	0	0	0	0	0	0	0	0	0	0	<u>,</u>	× ٩	\mathcal{S}	0	\sim	0	0	ο Ο	
15	0	0	0	0	0	0	0	0	0	0	0	0	0	\sim	0	\sim	0	10		V°.	0	
16	0	0	0	0	õ	õ	ő	ŏ	0	ő	ŏ	ő	7	つよ	N O	Ô	5	-0	\cdot	0	0	
17	ŏ	ŏ	ŏ	ŏ	ō	Ō	. 0	Ō	ō	ō	ō	ō	2	\mathcal{T}	<i></i> √₀	è.	-à)a	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ŏ	ő	
19	Ō	Ó	0	0	0	0	0	0	0	0	0	/१	12	V?	0	10	S)	18	0	0	ō	
20	0	0	0	0	0	0	0	0	0	0	0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	⁄⁄ ⁄	2°	<u></u>	<u>\</u> %	2	0	0	0	0	
21	0	1.00	0	0	0	ů	0	0	0	0	1	- Ca	\searrow	0	∕⋩∖	X	₹	0	0	0	1	
22	1.00	1 00	ő	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ğ	< Sa	<u>)</u> 0)	Ĭ	s d	2	8	ŏ	ŏ	0	0	1	
23	ŏ	1.00	ō	ō	Ō	0	0	0	0	ি	10	$\bigvee_{\mathscr{I}}$	0	\sim	R	0	Ō	Õ	ō	ŏ	3	
25	0	1.00	0	0	0	0	0	0	<u>%</u>	~ <u>_</u>	ノズ	∑ õ	0	12	\sim	~0	0	0	0	0	2	
26	0	1.00	0	0	0	0	0	0	<u> </u>	12	~	γ U Δ	\sim	\setminus	\sim	0	0	0	0	0	1	
27 19	0	1.00	040	0	ŏ	ŏ	ŏ	, ar	٦Ľ,	\mathbb{Z}	> ŏ	م	112	187	' Ö	ŏ	õ	ŏ	0	0	2	
40 29	Ő	1.00	0	ō	ŏ	Ō	Ō	ð (V.))o	Ō	< 2	Ś	\searrow	Ō	Ō	ō	ŏ	ŏ	ŏ	1	
30	Ó	0	1.00	0	0	0	0	_ 0	₹ Z	/ o	٦)à	No.	> 0	0	0	0	0	0	0	i	
31	0	0	1.00	0	0	0	/}-	\sim	. 0	0	ζξ.	ጋ፝፝	V.	0	0	0	0	0	0	0	6	
32	0	0.13	0.88	0	0	Â) ၂	Ö	Å	\sim	くざ	Z .0	. 0	0	ő	ñ	ň	0	0	8	
33 34	0	0.14	0.93	0.07	ŏ,	12,	~ 8	$\sim \lambda$	ō	Ť	10	\mathbf{v}_{0}	Ō	Ō	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	14	
35	ō	Ō	0.86	0.14	ĸ	X1/	/ ß	∼ o	ጽ	((0)9	0	0	0	0	0	0	0	Ō	ō	21	
36	0	0.06	0.94	0	2	14	//	0	//	18	\mathcal{I}	0	0	0	0	0	0	0	0	0	35	
37	0	0.03	0.94	0.03	C.	\overline{a}		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	V,	/ 0	- 0	0	0	0	0	0	0	0	0	0	34	
38	0	0	0.36	A64	S.	15	ŏ	\sim	1	\ ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ő	14	
40	ō	Ő	0.05	963	22	0	્જ	1	r V)	/ o	0	0	0	0	0	0	0	0	Ō	Ō	19	
41	0	0	Δ^{0}	2.5	/8.3 6	0	\sim	\smallsetminus	~	0	0	0	0	. 0	0	0	0	0	0	0	11	
42	0	~ %	2%	200	0.22	0	X	$\setminus $		ŏ	ŏ	ő	Ő	õ	0	ő	ŏ	0	0	0	9	
43	ĴŎ	Š	~~	<i>.</i> ,46	0.42	0.04	0.08	\sim_{0}	. 0	Ō	Ó	Ō	Ō	Ō	ō	ō	Ō	ŏ	ŏ	ŏ	24	
45	A	्०	N	0.38	0.34	<u>∂4</u> 7	2.67	0.03	0	0	0	0	0	0	0	0	0	0	0	0	29	
46	$\mathcal{N}^{\mathbf{Y}}$	\searrow	\bigcirc	0.35	0.40	~005 	015	0 15	0.05	0.05	0	0	0	0	0	0	0	0	0	0	20	
A1 A2	[]]	N	∕ŏ	0.07	6	$\overline{\mathbf{x}}$	0.25	0.14	0.04	ō	ŏ	ŏ	ō	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	å	27	
49	XG	∕) ŏ	Õ	2	0.18	0.39	0.11	0.29	0	0	0	0.04	0	0	0	0	0	Ó	Ō	ō	28	
19)	Ň	/ 0		> પ્ર	V.V	0.13	0.09	0.28	0.03	0.06	0.03	0.03	0	0	0	0	0	0	0	0	32	
$\langle y \rangle$	\sim $^{\circ}$	0	((°	<u> </u>	0.08	0.21	0.17	0.33	0.08	0.04	0.09	0	Ö	0	0	0	0	Ň	0	0	23	
st l	0	\sim	\backslash	\mathcal{I}_{δ}	0	0.27	0.27	0	0	0.09	0.18	Ō	0.09	0.09	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	11	
54	هر :	// 2	Võ	0	0	0.10	0.40	0.10	0	0.10	0.20	0.10	0	0	0	0	0	0	0	0	10	
55	~~~	\checkmark		0	0	. 0 . 0	0	0.11	0.22	0.11	0.22	0	0.11	0.22	0	0	0	0	0	0	9	
56 57	$//\sim$			0	ŏ	Ő	ŏ	0.15	ŏ	0.15	ŏ	0.15	0.50	0.50	ŏ	ŏ	0	0	0	0	8	
58 <	$\bigvee 5$		Ō	ŏ	Ō	Ó	0	0	0	Ó	0	Ó	1.00	0	Ō	Õ	Ō	ŏ	ŏ	ŏ	ĩ	
55) (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	*
(60)	$\sqrt{\sqrt{2}}$) 0	0	0	0	0	0	U A	0	1.00	0	0	0	0	0	0	0	0	0	1	
18	リと		0	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	Ő	ŏ	ŏ	0	ŏ	0	0	0	
<u> </u>		Ś) 0	0	Ō	0	0	0	0	0	0	0	0	Ō	Ō	Ō	Ō	ō	ŏ	ŏ	ŏ	
64	C) () 0	0	0	0	0	0	0	0	Õ	0	0	0	0	0	0	0	0	0	0	
65	9) () () \ ^	0	0	0	0	U	0	0	0	0	0 A	0 A	0	0 A	0	0	0	0	0	
00 67		, () (, u) 0	0	ő	ő	Ď	ő	ŏ	ő	ŏ	ŏ	ő	ŏ	ŏ	õ	ŏ	ŏ	0	U A	U O	
68	Č	b d	5 0	Ō	Ő	Ó	D	Ó	Ő	Ó	Ō	0	Ō	Ō	Ō	Ő	ō	ō	ŏ	ŏ	õ	
69	() () (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ō	
70	(0 (0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Total																					504	

Estimates of proportion of length at age for kahawai sampled from the East Northland recreational fishery, January to April 2002-03. (Note: Aged to 01/01/03)

¢

na an ann an ann an an an an an an an Arthreach ann an ann an ann an an an an

30

Appendix 4: Age-length keys derived from otolith samples collected from recreational fishers from the Hauraki Gulf in 2000-01, 2001-02 and 2002-03.

ĩ

Estimates of proportion of length at age for kahawai sampled from the Hauraki Gulf recreational fishery, January to April 2000-01. (Note: Aged to 01/01/01)

Length												-					\square	$\mathbf{\hat{\mathbf{A}}}$	Are ((ears)	6	$\langle \rangle$
(cm)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	1 15	16	र्षि	18	> 19	24<	aged	$\langle \rangle$
10	0	0	0	0	0	0	0	0	0	0	0	0	C) () (ふら	\sim	\checkmark	0	(6	ିର	Ŷ
11	0	0	0	0	0	0	0	0	0	0		0	0) () ($\langle \rangle$	(0	~	Q.	Ì	
12	ŏ	ŏ	ŏ	ŏ	ŏ	õ	ŏ	ŏ	ŏ	ŏ	Ö	Ö	č		$\langle \wedge i$	5	> °	0	18	\sum_{n}	> 0	
14	0	0	0	0	0	0	0	0	0	0	0	0	0) () y	Nº.	Ō	٨Õ	Q.	<i>χ</i> .	ő	
15	1.00	0	0	0	0	0	0	0	0	0	0						Å) &	\ o\	<u> </u>	1	
17	1.00	ŏ	ŏ	ŏ	ō	Ō	õ	ŏ	õ	ŏ	ŏ	Ő	ة>_ د		∑ ŏ	0	_ &	0	$\mathcal{S}^{\circ}_{\circ}$	0	0	
18	1.00	0	0	0	0	0	0	0	0	0	0	ø	\sim	$\langle \langle \rangle$	o o	18	- 9	\checkmark	Õ	ŏ	4	
19 20	1.00	0	0	0	0	ŏ	0	0	0	_0	0	\langle		\sim	0) X	0	0	0	8	
21	0	Ō	Ō	0	0	0	0	0	0	0	19	N	\bigvee	ŏ	\sim	18	Ľ	ŏ	ő	0	3	
22	0	100	0	0	0	0	0	0	0	0	\leq)າ	~ 0	2	\sim	\mathbf{i}	, 0	0	0	Ō	ō	
23 24	ŏ	1.00	Ö	ŏ	ŏ	õ	ŏ	ŏ	ŏ	_%	\searrow	\searrow	0	\sim	\mathbb{S}	\mathbb{S}	U 0	0	0	0	2	
25	0	1.00	0	0	0	0	0	0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	त्त	2)	,` ٥	0	10	>>	¥ õ	ŏ	ŏ	ŏ	ŏ	ŝ	
26 27	0	1.00	0	0	0	0	0	0	$\langle a \rangle$	\searrow	5 0	0	$\langle \rangle$	(/ S	/~0	0	0	0	0	0	5	
28	ŏ	0.44	0.56	ŏ	ō	Ō	ō	ি	\ õ))õ	ŏ	\Č	18	\backslash	, 0 0	ŏ	Ő	0	0	0	8	
29	0	0.55	0.45	0	0	0	0	0	6	シッ	2	~ %	No.	٥ ``	0	0	0	0	Õ	ŏ	11	
30 31	0	0.19	0.81	0.03	0	0/	\sim	Ve.	ŏ	0	78	75	\searrow	0	0	· 0	0	0	0	0	16	
32	0	0	0.90	0.10	0	ß	X)9	0	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	50	/ o	0	0	ō	ō	ŏ	ŏ	ŏ	54 41	
33 34	0	0	0.88	0.10	0.02	$\langle \rangle$	> %	\mathcal{N}	0	(C	\searrow	\searrow	0	0	0	0	0	0	0	0	50	
35	ŏ	ŏ	0.98	0.02	a	Ň	18	Ō	/»	1/2	ノふ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	0	0	42 44	
36	0	0	0.87	0.10	0.03	\sim	/0	<u> </u>	X,	<u>هر <</u>	~ 0	0	0	0	0	0	0	0	0	Ō	31	
38	ŏ	ő	0.38	<i>1</i> 0.20	0.10	ル	ŏ	$\langle \rangle$	X	\ ŏ	ŏ	ő	0	0 0	0	0	0	0	0	0	20	
39	0	0	0.42	(9 <u>4</u> 3)	as	0	<u>_</u>	-2	<u>}</u>	/ o	0	0	0	0	Ő	Õ	õ	ŏ	ŏ	ŏ	12	
40 41	0	0	233	0.81	∕os∠o (0.06	0.05 C	18	18	~0 0	0	0	0	0	. 0	0	0	0	0	0	0	20	
42	Ó	્	\$0.19	0.70	0.20	0	<i>S</i>	Σ¥.	0	Ó	0	Ō	ō	Ō	ŏ	ŏ	ŏ	ŏ	ŏ	Ö	10	
43 44	0	0	Q.30	0.50	0.20		\sim	· 0 0	0	0	0	0	0	0	0	0	0	0	0	0	10	
45	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ň	10,17	0.33	10.33	s. iv	6	ŏ	ō	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	0	0	0	8	
46	[] À	· N	/ o	/0	199	\mathbf{x}	0	0	0	0	0	0	0	0	0	0	0	Ō	Ō	ŏ	I	
4/	$\langle \mathcal{C} \rangle$	∕7ö	0	S	0,61	0	ŏ	ŏ	ŏ	ŏ	ŏ	ő	Ö	0	0	0	0	0	0	0	6	
AN)	- 0	0	P	२ ऱ्र	দ্রি (0.25	0	0	0	0	0	0	Ó	Ó	Ō	ō	ŏ	ŏ	ŏ	Ő	3 4	·
3.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\sim	0	(C	58	10.25 0	0	0	0.13	0.33	0.13	0.38	0.13	0	0 17	0	0	0	0	0	0	8	
52	' ŏ,	\sim	1/2	2	ō	Ö (0.25	Ō	0.50	0	0.25	0	ŏ	0.17	ŏ	ŏ	ŏ	0	0	0	6 4	
53	, Č	<u>/</u> 2	\searrow	0	0	0	0	0.50	0	0	0	0	0	0.50	0	0	0	0	Ō	ŏ	2	
55	∕∕⋧	Š	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	0.25	0.25	0.25	0.25	0.25	0	0	0	0	0	0	4	
56 <	V?	ୢୖ୵୶	0	0	0	0	0	0	0	0.33	0.33	0	0	0.33	Ó	Ō	Ō	Ō	ŏ	ŏ	3	
5	\backslash	0	0	0	0	0	ŏ	0	0.33	0	0	1.00	0	0.33	0.33	0	0	0	0	0	3	
(50))))	Ō	Ō	0	0	0	0	Ó	Ö	0	Ō	0	Ő	Ō	ŏ	ŏ	ŏ	ŏ	ŏ	0	1	
\otimes	ンぷ	0	0	0	0	0 Q	0	0	0	0	1 00	0	1.00	0	0	0	0	0	0	Ō	1	
62	ŏ	ŏ	ŏ	ŏ	ŏ	õ	õ	ō	ŏ	ŏ	0	ŏ	ŏ	ŏ	ŏ	ŏ	0	0	0	0	1	
63	0	0	0	0	0	0	.0	0	0	0	0	0	0	0	0	0	0	Õ	ŏ	ŏ	ŏ	
64 65	0	0	0	0	0	Ő	ŏ	ŏ	0	0	0	0	0	0	0	0	0	0	0	0	0	
66	Ō	Ō	Ő	Ó	0	Ó	Ó	Ó	Ő	Ō	Ō	Ō	õ	ŏ	ŏ	ŏ	ŏ	ŏ	0	0	0	
67 68	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	Ō	ō	
69	0	ŏ	ŏ	ŏ	ŏ	õ	ŏ	ŏ	ŏ	Õ	0	ŏ	0	ŏ	0	0	0	0	0	0	0	
70	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ō	0	ō	õ	ŏ	õ	
Total																				4	:00	
					-															-		

31

Appendix 4 - continued:

1

. . .

(Note: A	Agea to	01/01	/02)																>				>
Length (cm)		2		4	5	6	7	8	9	10) 11	12	13	1 14	1 15	1/	5 18	$\langle \langle \langle \rangle \rangle$	Age (years)	No.	$\langle \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	$\boldsymbol{\times}$
(cm) 10 11 12 13 14 15 16 17 18 19 20 21 22 24 25 26 27 28 9 0 31 32 33 45 36 37 38 9 0 41 42 33 44 55 55 55 55 55 55 55 55 55		2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 0 0 0 0 0 0 0 0 0 0 0 0 0	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 2$		
Total																					500		

Estimates of proportion of length at age for kahawai sampled from the Hauraki Gulf recreational fishery, January to April 2001-02.

....

32

<u>ج</u>

Appendix 4 - continued:

Estimates of proportion of length at age for kahawai sampled from the Hauraki Gulf recreational fishery, January to April 2002-03. (Note: Aged to 01/01/03)

33

.....

Appendix 5: Age-length keys derived from otolith samples collected from recreational fishers from the Bay of Plenty in 2000-01, 2001-02 and 2002-03.

í.

(

.

Estimates of proportion of length at age for kahawai sampled from the Bay of Plenty recreational fishery, January to April 2000–01. (Note: Aged to 01/01/01)

	-6		•															/	2.				
Length (cm)		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17,		A ()	$\frac{\text{years}}{19}$	No.	\sim	\mathcal{N}
	•	-	_	•	<u>^</u>	^	٥	٥	0	٥	۵	0	0	٥	0	•	\leq	\mathcal{N}	Ň	/ °,	-67	~~~	\sim
10	0	0	0	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ě	\checkmark	\sim	\sim	<u>د</u>	<u> </u>	\bigcirc	
12	ŏ	ŏ	ŏ	ŏ	Ō	Ō	0	0	0	0	0	0	0	0	0	18	°∖¢	$\langle \rangle$	Ō	6	- a	\mathcal{D}	
13	ō	0	0	0	0	0	0	0	0	0	0	0	0	0	Q	\sim	< °	\checkmark 0	0	વ	Da	>	
]4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	• •	\searrow	0	~	0)	$\langle 0 \rangle$		
15	0	0	0	0	0	0	0	0	0	0	0	0	0	<u>,</u>	\sim	0	~0	0 ~	\sim	∕°	V o		
16	0	0	0	0	õ	ŏ	ŏ	õ	ő	ŏ	ŏ	ŏ	ŏ	1	75	∕ ŏ	ŏ	୍ ଟ୍ଷ	10	23	0		
17	0	ŏ	ŏ	ŏ	ŏ	õ	Ō	ō	Ō	õ	ō	Õ	ý	> 8	` {}	V ö	Ř	\square	<u>Na</u>	Č	ŏ		
19	ŏ	ō	ō	Ō	0	0	0	0	0	0	0	0	18	<u>`</u> ^^`	\searrow	0	(ଏ	Q	18	, o	ŏ		
20	0	0	0	0	0	0	0	0	0	0	0	0	N	<u> </u>	2 °	ę	/ (q	٧) 0	0	0		
21	0	Ő	0	0	0	0	0	0	0	0	0	$\int \mathcal{L}$	Sa	\checkmark	· 0	∕%	\\°	್ಲಿ	/ 0	0	0		
22	0	0 50	0.50	0	õ	õ	ŏ	ŏ	ŏ	ŏ	ň	$\langle \zeta_{a}^{c} \rangle$)9	ŏ	Ď	$\langle S_{k} \rangle$	X	> ő	0	0	2		
25	ŏ	1.00	0	ŏ	ō	Ō	Ó	Ō	Ō	Ō	- থি	10	\checkmark	Ó	٦ð	No.	\ o	Ō	Ő	ō	2		
25	ō	1.00	0	0	0	0	0	0	0	X	<u>_</u> a`	7.6	V o	0	12	~0	∨ ₀	0	0	0	1		
26	0	0	0	0	0	0	0	0	0	\sim	12	\sim	0	\sim	1	\sim	0	0	0	0	0		
17	0	0.20	0.60	0.20	0	0	0	ñ	Å	X	\searrow	> %	~0	/Pa	16	> 0	0	0	0	0	5		
28	0	0.25	1.00	00	ŏ	ŏ	ŏ	ŏ	X	No.))ŏ	ŏ	< 2	Ň	\searrow	Ō	ŏ	ŏ	ő	0	7		
30	ŏ	0.06	0.88	0.06	Ō	0	Ō	A	0	Ň	/ 0	ø	72	No.	> 0	0	Ó	Ō	ō	ō	17		
31	Ó	0	0.86	0.14	0	0	0/	~	\mathcal{N}	0	0	18)4	\searrow	0	0	0	0	0	0	7		
32	0	0	0.90	0.10	0	0	\sim	S) X	0	0	\checkmark	\sum_{n}	70	0	0	0	0	0	0	10		
33	0	0	1.00	0.25	0	ں م	///	Ja~	10	0.	6	5	S°.	ő	0	0	0	0	0	0	10		
34 25	0	ŏ	0.63	0.31	0.06	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\checkmark	10	ŏ	اقم	(Ő)) 5	Ō	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	16		
36	ŏ	Ō	0.35	0.59	0.06	? `	∖ ∿∕	10	0,	/ ^,	12	1/0	0	0	0	0	Ó	0	Ō	Ō	17		
37	0	0	0.25	0.67	0.08	Or_	\mathcal{N}	0	~ <	\sim	ነ ፓ	- 0	0	0	0	0	0	0	0	0	12		
38	0	0	0.06	0.71	0.24		28	0	$\langle x \rangle$	\searrow		0	0	0	0	0	0	0	0	0	17		
39	0	0	0.08	0.00	100	WI	0	6	-2	\mathbb{N}	۷ŏ	ŏ	ŏ	ŏ	ŏ	ő	ő	Ö	0	0	25		
40	ŏ	ŏ	0.08	/342	VII/	0.08	0.08	10	0	~0	Ö	0	0	0.	. 0	Ō	Ō	Õ	õ	õ	12		
42	Ő	Ó	Ń	63	à.5§	0.17	0.08	10	V	0	0	0	0	0	0	0	0	0	0	0	12		
43	0	0	\sim	wits_	A 34	0.15	D.08 (20.08	\mathcal{L}^{0}_{α}	0	0	0	0	0	0	0	0	0	0	0	13		
44	0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0	N	0.52	0.1	0.12 N 13 <i>P</i>	nou	0.04	0.04	ő	. 0	ő	0	ŏ	0	0	0	0	0	25		
4) 46	0	\sim		10.04	0.17	0.39	δ¥.	.09	0.04	0.04	ŏ	ŏ	ŏ	ō	ō	ŏ	ŏ	ŏ	ŏ	ŏ	23		
47	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	/~	\searrow	0	0.05	PAT	Q34∕ ().05	0.05	0.05	0	0	0	0	0	0	0	0	Ō	Ō	19		
48	< 4 < 4	//0	\sim^{\sim}	0	Q.11	Min	9:50 (2.11	0.06	0.06	0.06	0	0	0	0	0	0	0	0	0	18		
49		\searrow	0		NX.	22	0.30 L 0.24 L	J.UY 174	0.05	0.03	0.18	0.05	0	0	0	0	0	0	0	0	22		
- <u>50</u>	\bigcirc	\sim	0	$\sqrt{6}$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.06	0.11 (0.11	0.22	0.11	0.28	0.06	0.06	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	17		
52	ごろる			10) (6	0.05	0.16 (0.05	0.21	0.21	0.21	0.05	0.05	0	0	0	Ō	Ō	Ō	ō	19		
53	\sim) 9	ろく		20	0.06	0 ().12	0.24	0.18	0.29	0.12	0	0	. 0	0	0	0	0	0	17		
54	ç	2/2	$\langle \rangle$	\sim	0	0	00	0.08 0.20	0.08	0.08	0.42	0	80.0	040	0 40	0.17	0	0	0.08	0	12		
55		でく	\mathcal{X}	0	ő	ŏ	ŏ	0	0.20	0.40	ŏ	ŏ	ŏ	0	0.40	0.40	ŏ	ŏ	ő	0	5	•	
57		1/20	\sim	ō	ŏ	Ō	Ō	Ō	0	0.17	0	0.17	0.17	0	Ō	0.17	0.17	0.17	ŏ	ŏ	6		
58		// 0) Č	0 (0	0	0	0	0	0	0	0	0.50	0	0.50	0	0	0	0	0	2		
59 /	\sim	$\overline{\mathbf{N}}$) () 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1.00	1		
60	()	9 ° 9) 0	0	0	0	0	0	0	0	1.00	0	0	0	0	0	0	0	0	2		
61	\sim	5 2	n d) 0	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ő	0		
63	\sim	ő d	ő d	Ó Ő	Ō	Ō	Ó	0	0	0	0	0	0	0	Ó	Ō	Ō	Õ	ō	ŏ	ŏ		
64	(0 () () ()	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
65	(0 () (0	0	0	0	0	0	0	0	0	0	0	0	Ő	0	0	0	0	0		
66	1	0 (0 0	0	0	V A	0	0	0 N	0 0	U N	v n	0	0	0	0	0	0	0	0		
67 60	1	0 i		0 0	0	ŏ	ő	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	0	0	0	0	0	0		
69		ŏ		ōŏ	ō	ō	Ö	Õ	Ő	Ō	ō	Ő	Ō	Ō	ō	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ		
70		0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ō	Ō		
Tota	1																				457		
T OLD	-																						

457

 $\mathbf{\nabla}$

34

•

Appendix 5 - continued:

t

(Note: A	ged to	01/01/	02)															~				\wedge
Length (cm)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	L] V	19 19	<u>ars)</u> >19	No. aged	$\langle \langle \rangle$
10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ś) e	1	0	$(\bigcirc$	$\land \lor$
11	0	0	0	0	0	0	0	0	U D	0	0	0	0	0	0	\sim	\bigvee_{k}	N°,	0	\sim	1e	ノノ
12	0	0	0	0	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ō	ō	Ő	ğ	$\langle 0 \rangle$	X	Ō	٥Š	10	-9	
13	ŏ	ŏ	Ō	Ó	0	0	0	0	0	0	0	0	0	0	ୢୢୢୢୢୢୢ	Z	्४	0	0	$\backslash \mathbb{V}$	~	
15	0	0	0	0	0	0	0	0	0	0	0	0	0	6	\sim 0	0	<u> Х О</u>	- <u>*</u>	\mathcal{N}	- V	0	
16	0	0	0	0	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ,	/ð	$) L_{Q}$	ŏ	ŏ	È	70/	ŏ	ŏ	
18	ŏ	Ő	ō	Ő	0	0	0	0	0	0	0	0	ß	V.	\sim	70	1	X	- P	0	0	
19	0	0	0	0	0	0	0	0	0	0	0	e e	\mathcal{C}	ኃእ	> °	0	(\mathbb{G})	18)	∨ °	0	0	
20	0	0	Ő	ŏ	Õ	ŏ	ŏ	ŏ	Ō	Ĩ Ŏ	Ö	بکھر	Ň	<u>}</u>	Ō	20	1/e	ノる	ō	ŏ	ŏ	
22	Ō	0	0	0	0	0	0	0	0	0	Ľ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	18		2	<u> </u>	<u>`~</u>	<u> </u>	0	0	0	
23	0	0	0	0	0	0	0	0	0	0	\sim	\searrow	<i>1</i>]%	ŏ	<	\checkmark	\sim	Ő	õ	ŏ	1	
24 25	ŏ	1.00	ŏ	ŏ	ō	Ō	Ō	0	0	A	79	Ň	0	ି	~) 📎	0	0	0	0	1	
26	0	0.60	0.40	0	0	0	0	0	2	10	7	$\mathcal{S}^{\circ}_{\mathbb{N}}$	0	\mathbf{x}	\bigtriangledown	>	0	0	0	0	5	
27	0	0	1.00	0	0	0	õ	ŏ,	$\sim \circ$	18	\searrow	ŏ	ູ ຈິ	NO	\	ŏ	ŏ	õ	ŏ	ŏ	2	
29	ő	0	1.00	Ō	Ō	0	0	0	6	(بر) 0	<u> </u>	Le'	1 K	>`°	0	0	0	0	0	1	
30	0	0	0.50	0.50	0	0	0	\overline{a}	П	J,	0 0/	ふ ふ	12	\gtrsim	0	0	0	0	0	0	2	
31	0	0	0.80	0.14	ő	ŏ	K	رتكر	\ Õ	ŏ	- ক্ব	$\langle \mathcal{N} \rangle$	5	× 0	Ō	õ	ō	Ō	õ	ŏ	7	
33	Õ	0	1.00	0	0	2) X)	X)) 0	Ŷ		\backslash	\sim	0	0	0	0	0	0	0	5	
34	0	0	0.67	0.22	0.11	\mathcal{X}	ぷこ	V.	õ	(%	٦ ک	$\ \$	Ö	ŏ	ŏ	ŏ	ŏ	ŏ	õ	ŏ	5	
35 36	0	Ő	0.13	0.75	0.ja-	28	(\$)	0	ø	> \&	راف	/ 0	0	0	0	0	0	0	0	0	8	•
37	0	0	0.20	0.50	9:30	× A)	V.	0.	< 🖏	\nearrow	^	0	0	0	0	0	0	0	0	0	20	
38	0	0	0.12	0.59	0.09	Ŵ	ŏ	<u>ि</u>	\X	Xŏ.	ŏ	ŏ	õ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	22	
40	ŏ	ō	0.04	061	0.92	0.04	_!<	1	78	\sim	0	0	0	0	0	0	0	0	0	0	28	
41	0	0	0.00	0.61	10251 654	0.04	$\langle \mathbf{x} \rangle$	2.08	$\overline{}$, U	ŏ	ŏ	Ö	0	0	ŏ	ŏ	ő	ŏ	0	23	
42 43	0	0	$\langle \mathbf{a} \rangle$	A.L	10.48	0.26	0.04	2.05	/ ō	Ō	Ó	0	0	0	0	0	0	Ō	Ō	ō	27	
44	0	0	804	0.12	0.40	A32	0.08	0.04	0	0	0	0	0	0	0	0	0	0	0	0	25	
45	ې م	\sim	0.0%	0.13	0.22	0.28	2	0.14	0	0.04	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	28	
47	//9	5		0	6.10	0.43	0/24 (0.08	0.05	0	0	0	0	0	0	0	0	0	0	0	37	
48	$\langle \checkmark \rangle$			್ಗಳ	0,40∕ 20,0∕	0.25	0.33 (0.18	0.09	0	0.02	0.06	Ő	Ő	ŏ	ŏ	ŏ	ŏ	ő	0	45 16	
\$	\sum		,	DOÀ	1.00	0.18	0.32	0.11	0.07	0.04	0.11	0.07	0.04	0	0	0	0	0	0	0	28	
Si V	\sim) O	((0.03		0.06	0.13 (0.13	0.16	0.10	0.26	0.10	0 06	0.03	0.06	0	0	· 0	0	0	31	
52			\sim	\searrow	0.00	0.08	0.08	0	0.25	0	0.17	0.25	0.17	ŏ	0	ŏ	ŏ	ŏ	ŏ	ŏ	12	
54	Ś	//9	6	V o	0	0	0	0	0	0	0.67	0.33	0	0	0	0	0	0	0	0	3	
55	\sim	$\langle \checkmark \rangle$			0	0	0.13	0.13	0.50	0	0.25	0.15	0.50	0.15	ŏ	Ő	ŏ	ŏ	0	Ö	8	
50 57	\square	5) o	0	ō	0	0	0	0	0	0	1.00	0	0	0	0	0	0	0	0	1	
58	X) (0	0	0	0	0	0	0	0 . 0	0.50	0	0	1.00	0.50	0	0	0	0	2	
50	$\langle \rangle \rangle$	>) 0	ō	ŏ	ŏ	ŏ	Ō	ō	ō	ŏ	Ō	Õ	0	ō	Ō	ō	ŏ	ŏ	ò	
6X)) i	0 0) () (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
62	\mathcal{P}	00) () () ()) ()	0	0	0	0	Ő	ŏ	ŏ	ŏ	Ö	ŏ	1.00	ŏ	ő	ŏ	ŏ	ŏ	1	
63 64	(0 0		5 0	Ő	õ	Ō	Ō	Ō	Ő	Ő	Ó	Ő	0	0	Ō	Ō	Ō	0	Ő	ō	
65	ĺ	0 (0 0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	
66 67	1	0 (0 C) () () (0	0	õ	0	0	ŏ	ŏ	õ	ő	ŏ	õ	ŏ	ŏ	ŏ	õ	0	õ	
68		0	ō	5 0	Ō	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
69	1	0	0 (0	0	0	0	0	0	· 0	0	0	0	0	0	0	0	U 0	0	0	
70		U (U (, u	, 0	v	v	•.	•	J	Ĵ	5		Ĵ	•	•	Ť	•	~	•		
Total															-						495	

Estimates of proportion of length at age for kahawai sampled from the Bay of Plenty recreational fishery, January to April 2001-02. (Note: Aged to 01/01/02)

35

Appendix 5 - continued:

Estimates of proportion of length at age for kahawai sampled from the Bay of Plenty recreational fishery, January to April 2002-03.

Total

•••

Length and age compositions of recreational landings of kahawai in KAH 1 in January to April 2003–04 and 2004–05

C

¢

Helena Armiger, Bruce Hartill, Robert Tasker and Matt Smith

Final Research Report for Ministry of Fisheries Research Project KAH2003/01 Objectives 1 & 2

This is the paperwriting marked "C" mentioned and referred to in the annexed Affidavit of Jonathan Clive Holdsworth sworn at Auckland this /4/k day of October 2006 before me:

National Institute of Water and Atmospheric Research April 2006 а. **С**

- -

EXECUTIVE SUMMARY

Armiger, H.; Hartill, B.; Tasker, R.; Smith, M.; Griggs, L. (2005). Length and age compositions of recreational landings of kahawai in KAH 1 in January to April 2003-04 and 2004-05.

New Zealand Fisheries Assessment Report 2006/xx. 37 p.

Landing sampling programmes are often used to provide length and age data for fisheries assessments. Usually, commercial landings are sampled as they provide the most insight into changes in length and age structure through time. Kahawai school by size, however, and commercial landings are usually composed of fish from only one or two schools. Length and age distributions sampled from individual landings therefore tend to be narrow and highly variable between landings, and are therefore limited in their utility. Recreational fisheries, however, are composed of thousands of trips, which sample a greater number of schools at a much lower level of intensity, and are therefore more likely to reflect changes in the underlying population. Resultant length frequency distributions tend to be more unimodal, with any secondary peaks probably reflecting strong year classes rather than the influence of individual schools. Further, there is no minimum legal size for kahawai and recreational fishers therefore tend to land a greater size range of kahawai, in addition to providing a more accurate insight into the population in the area fished.

Dedicated sampling of recreational landings of kahawai was initiated (as part of the Ministry of Fisheries programme KAH2000/01) in the summer of 2000-01, and continued for a further two years. This report documents the results of an additional two years sampling, undertaken as part of the Ministry of Fisheries programme KAH2003/01. The methods and sample design used in 2003-04 and 2004-05 were closely based on that used in the preceding three years. Noticeably fewer kahawai were encountered by boat ramp interviewers in the Hauraki Gulf and Bay of Plenty, despite far more intensive sampling effort resulting from another two concurrent programmes (REC2002/02 and REC2004/01). Sampling in the eastern Bay of Plenty in 2004 was also hampered by a rahui (fishery closure by local iwi) which halted fishing for several months, and also by staff shortages. Despite these problems, regional kahawai length and age compositions were described with satisfactory precision.

Regional length and age compositions derived from recreational landings sampled in both 2003-04 and 2004-05 are broadly consistent with patterns and trends seen in previous years. The East Northland population has become increasingly dominated by larger, older fish, and the age composition is now far more similar to that of the Bay of Plenty than it was five years ago. In contrast, the Hauraki Gulf population is composed of smaller, younger fish, with poor representation of the older age classes seen elsewhere. Probably the most abundant component of the KAH 1 population is that found in the Bay of Plenty, which now has a broad age distribution, predominantly composed of 3 to 11 year old fish.

When the results from this survey are combined with those of the previous three years, a time series of regional length and age distributions emerges which provides a key component of any future stock assessment of KAH 1. The manner in which these data will be used is partially dependent on our understanding of movement by a species which is commonly regarded as highly mobile. A cursory examination of data available from tagging programmes conducted in the early 1980s and in 1991 suggest that despite this mobility, 80–90% of kahawai remain resident within KAH 1, and that emigration within and between stocks/substocks is at least partially size dependent. If future stock assessments move away from the single stock approach used previously, and focus on KAH 1 (the only Quota Management Area for which an age structured modelling approach is currently possible), the possible influence of size-dependent movement should be explicitly considered. This may involve a more detailed analysis of the available tag/recapture data, which should consider the relative exploitation rates of substocks, and non-independence of observations arising from recapture events involving more than one fish, that were tagged during the same release event.

1. INTRODUCTION

Many fisheries are monitored using catch-at-age and catch-at-length data, which have been collected from commercial landings. Kahawai (*Arripis trutta*) school by size, however, and individual commercial landings, composed of fish from only one or two schools, can provide a very misleading description of the wider population structure when a limited number of landings are sampled. For example, amalgamated length frequencies collected from commercial purse seine landings in 1990–91 and 1991–92 were multimodal, and McKenzie & Trusewich (NIWA, Auckland, unpublished results) concluded that this was probably an artefact of the way the purse seine fleet operated, rather than an intrinsic feature of the Bay of Plenty population. While comprehensive sampling of commercial catches can be used to characterise commercial extraction, these samples cannot be considered indicative of the underlying population length and age structure, as the fishery operates non-randomly in space and time.

Recreational fisheries probably provide a more representative description of the local kahawai population, as a wider range of schools is sampled at a far lower intensity, thus lessening the influence of any single school (Bradford 2000). Further, recreational fishers catch, and tend to land, a wider size range of fish than their commercial counterparts (Bradford 1999). A time series of recreational catchat-age estimates should therefore provide better insight into changes in population age composition, which may be used to monitor the fishery. For this reason, dedicated sampling of recreational landings of kahawai was initiated in the summer of 2000–01, and continued for a further two years, as part of the Ministry of Fisheries programme KAH2002/02 (Hartill et al. 2004). This report documents the results of a further two years sampling, undertaken as part of the Ministry of Fisheries programme KAH2003/01.

Overall Objective

1. To monitor the status of the kahawai (Arripis trutta) stocks.

Specific Objectives

- 1. To conduct the sampling and determine the length and age composition of the recreational landings of kahawai in KAH 1 for the 2003/04 fishing year. The target coefficient of variation (c.v.) for the catch at age will be 30% (mean weighted c.v. across all age classes).
- 2. To conduct the sampling and determine the length and age composition of the recreational landings of kahawai in KAH 1 for the 2004/05 fishing year. The target coefficient of variation (c.v.) for the catch at age will be 30% (mean weighted c.v. across all age classes).
- 3. To assess the feasibility of using recreational CPUE as an index of kahawai abundance.

Work associated with the third specific objective is documented in a Final Research Report for KAH200401, which characterises New Zealand's fisheries (Hartill & Walsh 2005).

2. METHODS

2.1 Previous boat ramp surveys

In 1990–91, a survey was conducted to collect baseline information on harvest rates by recreational fishers interviewed at boat ramps throughout the Auckland Fisheries Management Area (Sylvester 1993). Most interviewing occurred on weekends between Boxing Day 1990 and June 1991. The main objective of a further survey in 1994 was to verify aspects of a concurrent recreational fisher diary

Comment [n w m1]: The AFMA acronym is not needed or useful

4

---- ---- ----- -----

survey. The length compositions of recreational catches measured during boat ramp interviews were compared with those reported by diarists. These boat ramp data were also used in conjunction with an aerial survey to estimate harvest from the Hauraki Gulf, which was compared with that derived from the diary programme (Sylvester 1994). In 1996, a nationwide boat ramp survey was carried out to estimate the mean weights of fish species caught by recreational fishers (Hartill et al. 1998). These mean weights were used in conjunction with estimates of the numbers of fish taken, derived from a telephone diary survey, to provide estimates of the national recreational harvest of key species (Bradford 1998a).

Although kahawai length frequency data are available from these boat ramp interviews, the underlying survey designs differed both spatially and temporally, and no age data were collected concurrently. Nonetheless, in a review of data collected from these surveys, Bradford (2000) suggested that sufficient kahawai were landed by recreational fishers to support a length and age catch sampling programme in KAH 1. Consequently, a three year recreational catch sampling programme was initiated in January 2001 (KAH2000/01; Hartill et al. 2004). In the first four months of each year, when fishing effort peaked, recreational landings of kahawai were sampled at key boat ramps throughout KAH 1. All available kahawai were measured, and otoliths were collected from a sizeable proportion of these fish. These data were then used to derive length and age distributions for three putative KAH 1 substocks: East Northland, Hauraki Gulf, and the Bay of Plenty.

This programme is essentially a two year extension of the previous three year programme. The methods used in this programme are therefore essentially the same as those used previously (KAH2000/01) and are discussed below.

2.2 Sample design

The sample design used in the 2003–04 and 2004–05 surveys was based on data collected from boat ramp surveys conducted in 2000–01, 2001–02, and 2002–03. Kahawai length data and age distributions from these surveys (and length data from previous surveys in 1991, 1994, and 1996) strongly suggest that there were substantive regional differences in the length frequency compositions of kahawai caught by recreational fishers in East Northland, the Hauraki Gulf, and Bay of Plenty (Bradford 1999, Hartill et al. 1998, 2004). Separate boat ramp surveys were therefore conducted in each of these regions (Figure 1) with concurrent collection of length and age samples from recreational landings of kahawai.

Sampling of recreational catches was restricted to a four-month season, 1 January to 30 April, which corresponds approximately to the peak of the recreational fishing season, when kahawai landings were likely to be most abundant. Restriction of sampling to a four-month season was also desirable, as a longer collection period would have increased the likelihood of growth distorting an age-length-key. Further, as otolith ring deposition occurs during the onset of winter (Stevens & Kalish 1998) collection of otoliths in early winter should be avoided, as ambiguous structures on the edge of the otolith may result in ageing error.

Target levels of sampling effort (excluding synergies arising from REC2002/02 and REC 2004/01 as discussed below) were based on those used in the three previous years, and are given in Table 1. The basis for these targets is a recommendation by Bradford (2000) that 400–500 kahawai should be aged to give a reasonable approximation of the relationship between length and age, and hence, potentially, a population's age structure. A further recommendation from this study was that as many fish as possible, preferably 1500 (E. Bradford pers comm.) should be measured to provide a reliable length frequency distribution. The timing and intensity of recreational landings of kahawai is, however, difficult to predict given interannual variability in fishing effort and the spatially dynamic nature of kahawai schooling behaviour. A reasonable intensity of sampling effort was therefore required in space and time so that appreciable landings of kahawai can be sampled, if and when they occur. In 2000–01, 2001–02, and 2002–03 this level of sampling yielded sufficient length and age data to
characterise catch distributions with mean weighted coefficients of variation (mwcvs) of generally less than 0.20, which is considered an acceptable level of precision. The required level of precision for catch-at-age distributions generated from this programme is 0.30, as specified in the objectives.

Figure 1: KAH 1 substock boundaries and location of boat ramp interview sites.

Sampling sessions at each ramp were randomly assigned to weekends and public holidays between 1 January and 30 April. In 2003–04, interviewing in East Northland and the Bay of Plenty took place solely on weekends and public holidays, when most recreational fishing usually occurs. If East Northland and Bay of Plenty based interviewers found that there were strong onshore winds or local competitions on any of the randomly preassigned dates, sampling took place on the next available weekend/holiday day. In the Hauraki Gulf, however, sampling effort was augmented by a concurrent

6

recreational harvest programme in the Hauraki Gulf in 2003-04 (REC2002/02) which involved intensive boat ramp interviewing.

Region	Number of ramps	Session length (h)	Number of sessions	Total hours interviewing	Target no. measured	Target age sample
East Northland	8	6	28	1 344	1 500	500
Hauraki Gulf	11	6	21	1 386	1 500	500
Bay of Plenty	9	4	12	432	1 500	500

Table 1: Sample design used in KAH 1 recreational fishery sampling programmes since 2000-01.

In 2004–05, the number of hours of interviewing in all three areas greatly exceeded the sampling design because of a large scale concurrent recreational harvest estimation programme (REC200401). Boat ramp interviewers were therefore present on randomly preassigned days only, regardless of the prevailing weather conditions. Nonetheless, more fishers were interviewed than in previous years, although much of this additional interviewing took place during the working week. The introduction of weekday sampling in the Hauraki Gulf in 2003–04 and all three areas in 2004–05 is unlikely to influence the size and age composition of landings, as results from the 1996 boat ramp survey demonstrated that there were no substantive differences between length frequencies of commonly caught species during weekdays and weekends (Hartill et al. 1998).

Interviews followed the format of those undertaken in all previous surveys to ensure that the data were collected in a consistent manner. When more than one vessel approached a ramp simultaneously, a vessel was chosen randomly before landing. When fishers landing kahawai were encountered, all fish, including kahawai, were measured. For ageing purposes, kahawai were selected at random from each vessel's catch, from which no more than four fish were taken. As age samples were collected randomly, the length distribution of the age sample should broadly reflect the length distribution of the landed catch. Kahawai otoliths are fragile and time consuming to extract and interviewers therefore asked permission to cut the head off at the gills. Most of recreational fishers permitted the interviewer to remove heads from their kahawai. These heads were retained by the interviewer together with a record of the fish's length, and a code linking the head to other data collected during the interview. Kahawai were not sexed, as there is no apparent sexual dimorphism in growth rates (Bradford 1998b). Otoliths were extracted from these heads at a later date.

2.3 Ageing of kahawai otoliths

Kahawai otoliths were prepared using the thin section method described by Stevens & Kalish (1998). Each otolith was marked across an intended sectioning plane passing through the nucleus. Each otolith was then imbedded in a disposable epoxy mould with three other otoliths so that their nuclei were at the same level. Once the resin hardened, a thin transverse section was cut out of each epoxy block with a Struers Accutom-2 low speed saw. One side of this section was then ground, polished, and mounted polished side down on a slide using 5-minute epoxy resin. After at least 1 hour, the material attached to each slide was sectioned again (to a thickness of approximately 250 to 350 µm) and briefly polished with 400 grit carborundum paper. These slides were then sprayed with artists lacquer.

To improve clarity, a thin layer of immersion oil was brushed over each slide and reading took place under transmitted light. Three readers were used to interpret the thin sectioned otoliths and disagreements in interpretation were resolved using a method similar to that used for snapper (Davies & Walsh 1995) which was as follows:

each reader independently read all otoliths collected from a region;

- disagreements between the three readers' initial age estimates were identified and where one or more readers failed to agree in their initial interpretation of an otolith, those readers reread the otolith with no knowledge of any prior age estimates;
- remaining disagreements were resolved by discussing images of otoliths projected onto a video screen until a consensus was reached; and
- if no consensus could be reached, the otolith was discarded from the dataset.

Very few otoliths were discarded in practice, and when this occurred, both otoliths were usually deformed and, hence, unreadable.

2.4 Data analysis

Proportional catch-at-length and catch-at-age distributions and analytical variance estimates were calculated for each region using a FORTRAN program developed for a snapper market sampling programme (Davies & Walsh 1995). Vessels landing kahawai were regarded as individual strata, which were weighted on the basis of the number of kahawai landed. The distribution of fish at age within length classes (an age-length key) was derived for each region, and used to translate the regional length distributions into estimates of recreational catch-at-age. Proportional catch-at-age estimates were calculated for the range of age classes recruited, with the maximum age being an aggregate of all age classes greater than 19 years. Recreational catch-at-age and length frequency distributions and their associated variances were presented in the form of histograms and tables.

For each region, catch-at-age distributions were derived for each of the four months sampled using the same analytical approach used to derive regional distributions. Regional age-length-keys were used to derive these age distributions, as the number of kahawai aged from each month was considered insufficient to describe the underlying length-age relationship. This assumes that the month of sampling has little influence on the relationship between length and age within a region. Temporal trends in the underlying age composition of the regional kahawai populations fished by recreational fishers were then inferred from these histograms. Estimates of precision (mwcvs) were not calculated for monthly distributions due to the low sample sizes of the component strata.

3. RESULTS

3.1 The 2003–04 sampling season

A network of interviewers was established at 28 key boat ramps in East Northland, the Hauraki Gulf, and the Bay of Plenty (Figure 1). During the 2003–04 sampling season in the Hauraki Gulf the number of hours spent interviewing recreational fishers was almost twice that of previous years, yet far fewer kahawai were encountered than in previous years (Table 2). In same year in the eastern Bay of Plenty there was a rahui in place which halted all fishing effort at the Motu River and Waihau Bay. Very few hours of interviewing therefore took place at these ramps, although good numbers of kahawai were measured when fishing took place.

3.2 The 2004–05 sampling season

In 2004–05, the number of hours of interviewing in all three regions greatly exceeded the sampling design because of a parallel large scale recreational harvest survey (REC2004/01). Again, far fewer kahawai were encountered, especially in the Hauraki Gulf and Bay of Plenty regions (Table 2). In the eastern Bay of Plenty, lack of suitable interviewers at the Motu River, and to a lesser extent Waihau Bay, limited the data that could be collected from these areas.

3.3 Length and age distributions

3.3.1 East Northland

The length distribution of East Northland recreational kahawai landings in both 2003–04 and 2004–05 was typically broad, and dominated by a mode at about 50 cm, which has been progressing through length compositions described over the last five years (Figure 2). This progression has resulted in an increasingly even and broad age distribution, reflecting either better than average year class strengths 9 or 10 years ago, or poor recruitment in recent years relative to that of the older age classes. Length and age distributions were both described with reasonable precision, with mwcvs of 0.20 in 2003–04 and 0.19 in 2004–05 (Appendix 1) and 0.14 for both years (Appendix 2). In this region, most kahawai recruit into the fishery at about 3 years of age, which corresponds to a length mode of about 30 to 40 cm (Appendix 3).

Comparisons of monthly age distributions (across all ramps) suggest that there are some temporal changes in the age composition of kahawai landings during the survey (Figure 3). In all years, 2 to 4 year old fish were more predominant at the beginning of the survey, in January, than later, in April. There was usually a marked increase in the number of kahawai encountered by boat ramp interviewers in March and April, which suggests that changes in the age composition of recreational landing may be due to a mechanism such as onshore movement of schools of older fish in later months.

As in previous years, most kahawai were caught within 5 km of the mainland coast, where most fishing effort occurs: 84% in 2001–02, 97% in 2002–03, and 83% in 2003–04 (Figure 4). Most of recreational fishing effort takes place close to shore, however, and it is possible that numerous schools of offshore kahawai were not encountered. Despite the paucity of information on offshore catches, there appears to be some evidence of increasing fish size with increasing distance offshore. These data were not collected in the 2004–05 fishing year.

Table 2: Summary statistics by region of the number of interview sessions, hours surveyed, vessels with measurable kahawai, kahawai measured, kahawai measured per hour, and kahawai aged in 2003-04 and 2004-05. Regional summary statistics from previous survey years are given for comparative purposes.

-

Region	Year	Ramp	Number of sessions	Number of hours	Boats interviewed (fishing)	Boats with measurable kahawai	Kahawai measured	Kahawai aged
East Northland	2005	Mangonui Opito Bay Waitangi Tutukaka Parua Bay (public) Parua Bay (club) Ruakaka Mangawhai Total	62 31 32 63 62 32 31 344	411 192 390 193 415 412 196 197 2 407	462 280 506 170 398 558 185 193 2 752	129 52 99 23 40 83 10 23 459	309 111 261 55 67 137 12 41 993	104 60 132 43 40 88 11 36 514
	2004	Mangomui Opito Bay Waitangi Tutukaka Parua Bay (public) Parua Bay (club) Ruakaka Mangawhai Total	19 21 24 23 26 28 26 23 190	123 109 140 120 150 158 156 139 1 096	367 204 259 339 478 254 307 2 427	78 54 89 45 47 81 9 36 439	154 97 269 106 111 178 18 82 1 015	72 64 90 73 62 90 12 54 517
	2003 2002 2001		186 199 196	1 049 1 110 1 129	2 089 1 878 2 233	436 491 474	1 171 - 1 318 1 236	504 526 517
Hauraki Gulf	2005	Sandspit Gulf Harbour Takapuna Westhaven Hobson Bay Okatu Bay Half Moon Bay Maraetai Kawakawa Bay Kaiaua Te Kouma To tal	35 63 64 20 25 97 30 64 32 63 557	228 404 399 406 121 150 611 181 414 193 411 3 529	143 499 849 836 118 308 1458 256 993 181 761 6 402	8 24 40 28 2 11 51 2 71 56 293	9 39 94 44 2 19 94 6 214 85 606	3 12 36 32 1 11 25 6 93 - 70 289
	2004	Sandspit Gulf Harbour Takapuna Westhaven Hobson Bay Okahu Bay Half Moon Bay Maraeta Maraeta Kawakawa Bay Kaiaua Te Kouma	20 44 46 22 16 85 23 47 23 38	124 267 290 278 133 96 505 139 278 135 230	139 426 814 744 344 277 1637 299 889 193 460	11 26 39 33 11 12 89 11 86 84 23	26 44 146 56 23 18 187 15 193 11 45	26 23 52 32 15 11 91 14 47 - 39
	2004	Total	408	2 475	6 222	345	764	350
	2003 2002 2001		231 204 212	1 301 1 138 1 174	3 432 3 348 2 706	395 339 435	880 786 892	527 500 500
Bay of Plenty	2005	Whitianga Tairua Bowentown Sulphur Point Maketu Whakatane Ohope Motu Waihau Bay Total	50 32 62 121 26 64 27 15 9 406	346 209 419 780 157 415 164 94 54 . 2636	358 269 603 1 476 242 441 111 111 100 3 611	51 32 65 226 58 74 37 9 13 565	116 54 116 613 136 294 107 28 19 1 483	60 10 66 78 29 86 64 - - 393
	2004	Whitianga Tairua Bowentown Sulphur Point Maketu Whakatane Ohope Motu Waihan Bay Total	15 14 16 15 10 16 5 1 108	60 47 68 63 39 61 23 5 429	170 131 111 177 62 201 54 41 5 952	26 19 18 60 34 85 24 35 5 306	67 37 46 155 77 326 58 198 31 995	47 19 37 113 34 74 57 31 412
	2003 2002 2001		120 141 100	462 474 319	! 246 i 197 934	357 457 294	1 133 1 476 1 104	477 495 457

10

,

-

..

Figure 2: Length and age distributions (histograms) and c.v.s (solid line) of recreational landings of kahawai in East Northland in 2000-01, 2001-02, 2002-03, 2003-04, and 2004-05.

Figure 3: Cumulative age distributions by month for East Northland in 2000-01, 2001-02, 2002-03, 2003-04, and 2004-05. Left hand panels compare monthly age distributions within fishing years and right hand panels compare annual age distributions for each of the four months. The number of fish measured is given for each month.

......

. _ _

Figure 4: Length of landed kahawai relative to the estimated distance off the East Northland coastline at which they were caught. Results from the previous two years are also given for comparison. Data on the distance fished offshore were not collected in 2004-05.

3.3.2 Hauraki Gulf

Fewer kahawai were encountered by boat ramp interviewers in the Hauraki Gulf than in previous years, despite an almost doubling of the number of hours that interviewers were present at ramps (Table 2). The length and age compositions were still described to a reasonable level of precision, however, with respective mwcvs of 0.22 and 0.10 in 2003–04 and 0.28 and 0.18 in 2004–05 (Appendices 1 & 2).

As in previous years, the 2003–04 length composition was dominated by 30 to 40 cm kahawai, although the proportion of larger fish was much lower than seen before. This is reflected in the age distribution, which is composed almost entirely of 2 to 4 year old fish. The results from this year's sampling therefore support a previous suggestion that the Hauraki Gulf is a juvenile fishery (Hartill et al. 2004). The relative strength of the 2 year old age class was the strongest observed to date, which is clearly evident as a mode of 25 to 35 cm fish in the length frequency distribution (Figure 5, Appendix 3). It is unclear whether the relative strength of the 2 year age class is due to a year of strong recruitment, or the low abundance of older fish. Low catch rates suggest the latter.

The 2004–05 length composition is multimodal with a greater proportion of larger fish than seen in previous years. The strength of the 50 to 55 cm cohort, coupled with the decreased incidence of kahawai landings generally, suggests that in the last two years, recruitment in the Gulf has been poor. The corresponding age distribution is still largely dominated by three year old age class, however, which indicates that the Hauraki Gulf remains a juvenile fishery.

In 2003-04, there was very little difference in the monthly age distribution of kahawai landings (Figure 6). The age distributions of kahawai landed in March and April in 2004-05 are markedly broader than seen in previous years, however, possibly due to an influx of larger, older fish coupled with lower levels of recruitment by juveniles. The relationship between the abundance and size of kahawai landed with respect to distance offshore was not assessed, as the shape of the coastline, and abundance of islands makes any such interpretation difficult.

Figure 5: Length and age distributions (histograms) and c.v.s (solid line) of recreational landings of kahawai in the Hauraki Gulf in 2000-01, 2001-02, 2002-03, 2003-04, and 2004-05.

Figure 6: Cumulative age distributions by month for the Hauraki Gulf in 2000-01, 2001-02, 2002-03, 2003-04, and 2004-05. Left hand panels compare monthly age distributions within fishing years and right hand panels compare annual age distributions for each of the four months. The number of fish measured is given for each month.

3.3.3 Bay of Plenty

The Bay of Plenty length distribution has been consistently dominated by larger length classes over the last five years, although a secondary mode of 50–45 cm is clearly evident in 2004–05 (Figure 7). The availability of larger fish in the Bay of Plenty may influence fisher selectivity, however, with a greater likelihood that smaller kahawai will be released, and hence not measured. The age distribution remains broader than in the other two regions, and there is evidence of a strong recruitment of 3, 4, and 5 year olds in 2004–05.

The number of kahawai encountered by boat ramp interviewers per hour remains far higher in the Bay of Plenty than in the other two regions (Table 2), but the number of kahawai measured in a season can fall well short of 1500 fish, as low as 995 in 2003–04. In the last two years only about 400 kahawai heads were collected during interviews, largely because of a lack of suitable staff in the far eastern Bay of Plenty. Nonetheless, the precision of the length (mwcvs of 0.17 and 017) and age (0.17 and 0.17) distributions were within acceptable levels (Appendix 1 and 2). Comparison of cumulative monthly age distributions from the Bay of Plenty suggests that there is very little change in age compositions in this region between January and April (Figure 8). This is in contrast to East Northland and the Hauraki Gulf, where marked changes can occur over the survey period (see Figures 3 & 6).

In 2003–04, almost all (97%) of kahawai were caught within 5 km of the mainland, and consequently, the relationship between fish size and the distance they were caught from the mainland is poorly defined (Figure 9). Nonetheless, results from the previous two years suggest that no clear trend exists. These data were not collected in the 2004–05 fishing season.

Figure 7: Length and age distributions (histograms) and c.v.s (solid line) of recreational landings of kahawai in the Bay of Plenty in 2000–01, 2001–02, 2002–03, 2003–04, and 2004–05.

_ . .

Figure 8: Cumulative age distributions by month for the Bay of Plenty in 2000-01, 2001-02, 2002-03, 2003-04, and 2004-05. Left hand panels compare monthly age distributions within fishing years and right hand panels compare annual age distributions for each of the four months. The number of fish measured is given for each month.

Figure 9: Length of landed kahawai relative to the estimated distance off the Bay of Plenty coastline at which they were caught. Results from the previous two years are also given for comparison.

- ----

3.4 Comparison of analytical and bootstrap variance estimation techniques

Since the inception of this time series, all length-based and age-based variance estimates have been calculated using analytical techniques, but it has been suggested that a bootstrapping approach could provide more appropriate variance estimates. Analytical and bootstrap variance estimates were therefore calculated for two data sets: Hauraki Gulf 2004–05 and Bay of Plenty 2004–05. These data sets were chosen because of the marked differences in their length and age compositions, and because their age-length keys were based on comparatively low sample sizes.

In both cases, there was very little difference between the variances estimated by the analytical and bootstrapping techniques (Figure 10). The length-based variance estimates were very similar across the entire length range, but there were subtle differences between the age-based variance estimates for both sets. The bootstrapping approach gave slightly higher variance estimates for the younger, more common age classes, but higher estimates for the older, less common age classes. The mean weighted c.v.s were almost identical for the length distributions, but the age-based bootstrap estimates were lower than their length-based counterparts. These results suggest that there is little merit in recalculating bootstrap c.v.s for all of the kahawai length and age data sampled from recreational fishers since 2001.

Figure 10: Comparison of analytical and bootstrap variance estimates calculated for recreational landings of kahawai in the Hauraki Gulf and Bay of Plenty in 2004-05.

Variance can be underestimated when boats fish in a non-independent manner, leading to correlated landings in space and/or time. We examined catch data collected in the Bay of Plenty in 2005 for evidence of such correlations. Cursory examination of the average size of fish landed by ramp, by survey day, suggested that there was no pattern in catches across ramps, within a survey day, or with any given ramp throughout the sampling season. It is perhaps not surprising that there was no marked similarity between the average size of fish landed across ramps on any given survey day, as in most cases there is a marked distance between ramps, and the number of kahawai encountered at most ramps is very low. Of those boats that land kahawai, 70% land between one and three fish.

Over 40% of the kahawai landed in the Bay of Plenty in 2005 were landed at Sulphur Point, and we tested these landings for autocorrelation. Landings were chronologically sorted and autocorrelation functions were calculated on the average size of the kahawai measured from each boat, at different lags between observations (Figure 11). Significant autocorrelation only occurs at a lag of every seventh boat, and this is probably due to chance given the non-significance of other lag statistics calculated. This suggests that, in this case at least, there is no significant correlation between landings, and hence no concomitant underestimation of variance.

Figure 11: Autocorrelation between the average length of kahawai landed by boats at Sulphur Point, in the Bay of Plenty in 2005. Dashed lines denote 95% confidence intervals.

3.5 Total mortality estimates

One of the original reasons for collecting a time series of catch-at-age data was to monitor changes in associated fisheries. One way of doing this is to monitor changes in total mortality estimates (Z). Chapman & Robson (1960) estimates of Z were calculated for all of the age distributions sampled from the East Northland and Bay of Plenty since 2001 (Table 3). Age distributions from the Hauraki Gulf were not considered, as this is essentially a juvenile fishery, with recruitment, and presumably emigration,

largely determining the age composition of landings in this region, not post-recruitment mortality. The Chapman Robson estimator is sensitive to the assumed age at recruitment, which we assume to be at 4 years of age, although estimates associated with recruitment ages of 3 to 6 years are given for comparison. These estimates suggest that mortality rates are generally higher in East Northland than in the Bay of Plenty. Size-dependent movement between the areas could, however, influence respective age structures, and consequently this could result in misleading estimates of total mortality. Unfortunately, our understanding of the nature and magnitude of movement between areas is very limited, and these estimates should be treated with some caution. Natural mortality is assumed to be about of 0.18.

Table 3: Estimates of Z derived from recreational catch sampling in East Northland and the Bay of Plenty, by survey year by assumed age at recruitment.

Age at		East Northland							Bay of Plenty		
recruitment	2001	2002	2003	2004	2005	2001	2002	2003	2004	2005	
3	0.33	0.33	0,32	0.28	0.24	0.23	0.25	0.28	0.20	0.27	
4	0.34	0.38	0,35	0.31	0.28	0.26	0.30	0.32	0.23	0.29	
5	0.30	0.37	0.39	0.33	0.33	0.28	0.33	0.34	0.26	0.30	
6.	0.30	0.40	0.41	0.38	0.36	0.30	0.36	0.38	0.32	0.30	

4. DISCUSSION

Obtaining sufficient length-at-age samples from a region's recreational fishery to adequately describe catch compositions will always be an uncertain process. Unlike commercial fisheries, where annual catch levels are largely determined by TACCs, recreational fishing effort and kahawai landings vary interannually depending on prevailing weather patterns and local catch rates. In 2003–04, in the Hauraki Gulf, and in 2004–05, throughout KAH 1, fewer kahawai were encountered than in previous years despite heightened levels of sampling effort resulting from synergies with other programmes (REC2002/02 and REC2004/01). In the eastern Bay of Plenty, very little sampling took place in 2004 due to a rahui, which closed fishing areas off the Motu River and Waihau Bay for several months. Similarly, little sampling took place at these two ramps, because of a lack of suitable applicants for interviewing positions. Although fewer kahawai were encountered than desired, the length and age compositions of the regional populations were still described with reasonable precision (mwcvs mostly below 0.20, with the exception of Hauraki Gulf length distributions with mwcvs of 0.22 in 2003–04 and 0.28 in 2004–05), well within the target level of precision of 0.30. We have compared our analytical variance estimates with bootstrapped estimates in two instances, which suggest that there is very little difference whichever approach is used.

Regional length and age compositions derived from recreational landings sampled in 2003–04 and 2004–05 are broadly consistent with patterns and trends seen in previous years (see Bradford 1999, Hartill et al. 2004). The East Northland population has become increasingly dominated by larger, older fish, and the age composition is now more similar to that of the Bay of Plenty than it was 5 years ago. In contrast, the Hauraki Gulf population has become composed of increasingly smaller, younger fish, with poor representation of the older age classes seen elsewhere. The only year in which appreciable proportions of older kahawai were observed was in 2004–05 when catch rates were low. This suggests lower recruitment than usual, which would increase the relative dominance of older fish. The broadest age distribution is found in the Bay of Plenty, which is usually composed of 3 to 11 year old fish. Although part of the recreational kahawai catch is used for bait, or returned to the sea, the landed catch in East Northland and the Hauraki Gulf should broadly reflect the overall catch, as discard rates are very low in this area (Hartill & Walsh 2005). Discard rates are higher in the Bay of Plenty, and these, coupled with a possible tendency to release smaller fish, may result in some bias towards older fish in this region.

The division of KAH 1 into three regions/substocks was based upon current research conventions and geographical boundaries, but consistent differences in regional kahawai population compositions, as

seen in this and previous years, suggest that these divisions have some biological relevance. Nonetheless, regional population compositions should not be regarded in isolation, as some interregional exchange is inevitable given the mobility of this species. This is evident in the Hauraki Gulf, for example, where the low availability of fish longer than 40 cm strongly suggests that schools of larger fish tend to emigrate to more open waters after 3-4 years of age. The low proportion of sexually mature fish in the Hauraki Gulf suggests, however, that at least some of the predominantly juvenile kahawai caught in this area must have been spawned elsewhere.

The manner in which the current time series of regional length and age data are used will be partially dependent on our understanding of the nature and degree of movement patterns. Some information on kahawai movement patterns can be inferred from tagging programmes conducted throughout New Zealand waters in the early 1980s (Wood et al. 1990) and in the Bay of Plenty and Tasman Bay in 1991 (Griggs et al. 1998). Between 1981 and 1984, 13 911 kahawai were tagged from a range of fisheries, resulting in 1105 returns for which the area of recapture was known. Of the 199 fish tagged and released in KAH 1 and subsequently caught, 80% were recaptured in KAH 1, with the majority of the remainder caught in the Hawke Bay/Gisborne area. Conversely, only 1–2% of fish tagged in other areas appear to have emigrated to KAH 1.

Of the 4622 kahawai tagged in the Bay of Plenty, and 4984 in Tasman Bay, recapture locations were known for 351 and 702 fish respectively. These data suggest that 90% of fish in the Bay of Plenty were resident over the next 7 years, and 98% in Tasman Bay, although a lower proportion were recaptured in this area after 3 years.

Both these studies suggest that "residency" at the scale of the Quota Management Area ranges from 70-100% depending on the population length composition. In KAH 1, a cursory examination of the data suggests that 80-90% of fish remain resident in this area. Larger fish appear to be more mobile, and those that emigrate from KAH 1 have a tendency to migrate towards the Hawke Bay/Gisborne Area. These studies therefore provide only a limited insight into the nature and extent of large-scale movements, but enough to suggest that seasonal migrations along the New Zealand coastline, as exhibited by species such as gemfish (Hurst & Bagley 1998) and blue moki (Francis 1981), are unlikely for this species. Previous stock assessments (Bradford 1996, Bradford 1997) have regarded New Zealand's kahawai as belonging to a single stock. We suggest that an assessment of solely the KAH 1 stock is feasible given this degree of emigration, and minimal evidence of immigration from other Quota Management Areas. Such an assessment should, however, consider size-specific movement both between KAH 1 substocks and from KAH 1. Size-specific movement within KAH 1 could also influence the reliability of the total mortality estimates as discussed earlier. A more detailed analysis of the available tag/recapture data is required to do this, which should consider the relative exploitation rates of localised fishstocks, and non-independence of observations arising from recapture events involving more than one fish, which were tagged during the same release event. A review of this nature may well suggest that we have insufficient data to describe movement patterns in a meaningful way, and any modelling based on currently available data may involve some broad assumptions about this behaviour.

There is some suggestion of smaller scale behavioural movement patterns. In all three regions, in most years, the number of kahawai encountered by boat ramp interviewers was noticeably greater in the second half of the survey. These observations are consistent with either an onshore migration of sexually mature kahawai in the autumn or increased catachability, following spawning in deeper waters in January and February (60–100 m; Annala et al. 2003). This suggestion is further supported by evidence of an increase in the average size of fish caught off the East Northland as the distance from the mainland increases. In the Bay of Plenty, however, this trend is not clearly evident, despite a greater number of kahawai caught further offshore in 2001–02 and 2002–03.

The issue of ageing error was discussed at the Pelagic Working Group, and, as a result, we compared regional mean length-at-age estimates collected between 2001 and 2005. There were clear trends of progressively increasing mean length-at-age in all three regions, for which there are at least four

possible reasons: ageing error, changes in the timing of otolith collection, changes in selectivity, and increasing growth rates through time.

Ageing error will occur in most, if not all, stock monitoring programmes, but the progressive nature of the trends observed suggest that this is not the case, as ageing error is more likely to be a random process. Changes in readers can influence results, but most readers have read at least three years of data, and the trends were still clearly evident in the ages determined by the most experienced and proficient reader, who has read all sets to date. There has been no progressive change in the timing of otolith collecting, so this explanation is unlikely, especially given the short sampling season. There is also no evidence to suggest that recreational selectivity would have changed to any extent through time. The final explanation, of changes in growth rates through time, is possible, as it has been clearly shown for snapper (Davies et al. 2003), which is a comparatively easy species to age. Nonetheless, further work will be required if we are to determine whether the putative changes in growth rates are biologically real, or if they are an artefact of our sampling programme. As a first step, otoliths collected over several years should be selected at random and read over a short period by a single experienced reader, to test the proposition that ageing error has taken place in a progressive manner.

5. ACKNOELEDGMENTS

We thank the numerous boat ramp interviewers, most of whom took part in all three surveys. The Pelagic Working Group, and particularly, Paul Taylor, provided some useful comments on an earlier draft. Funding for this project, KAH2003/01, was provided by the Ministry of Fisheries.

6. REFERENCES

- Annala, J.H.; Sullivan, K.J.; O'Brien, C.J.; Smith, N.W.McL.; Grayling, S.M. (Comps.) (2003). Report from the Fishery Assessment Plenary, May 2003: stock assessments and yield estimates. 616 p. (Unpublished report held in NIWA library, Wellington.)
- Bradford, E. (1996). Preliminary simulation modelling of kahawai stocks. New Zealand Fisheries Assessment Research Document 96/7. 26 p.
- Bradford, E. (1997). Update of kahawai simulation model for the 1997 assessment and sensitivity analysis. New Zealand Fisheries Assessment Research Document 97/20. 12 p.
- Bradford, E. (1998a). Harvest estimates from the 1996 national marine recreational fishing surveys. New Zealand Fisheries Assessment Research Document 98/16 27 p. (Unpublished report held in NIWA library, Wellington.)
- Bradford, E. (1998b). Unified kahawai growth parameters. NIWA Technical Report 9. 50 p.
- Bradford, E. (1999). Size distribution of kahawai in commercial and recreational catches. NIWA Technical Report 61. 51 p.
- Bradford, E. 2000: Feasibility of sampling the recreational fishery to monitor the kahawai stock. New Zealand Fisheries Assessment Report 2000/11. 34 p.
- Chapman, D.G.; Robson, D.S. (1960). The analysis of a catch curve. Biometrics 16: 354-368.
- Davies, N. M.; Hartill, B.; Walsh, C. (2003). A review of methods used to estimate snapper catch-atage and growth in SNA 1 and SNA 8. New Zealand Fisheries Assessment Report 2003/10. 63 p.
- Davies, N.M.; Walsh, C. (1995). Length and age composition of commercial snapper landings in the Auckland Fisheries Management Area 1988-94. New Zealand Fisheries Data Report No. 58. 85 p.
- Francis, M.P. (1981). Spawning migration of moki (Latridopsis ciliaris) off eastern New Zealand). New Zealand Journal of Marine and Freshwater Research 15: 267-273.
- Griggs, L.; Bradford, E.; Jones, B.; Drummond, K. (1998). Growth and movement of tagged kahawai in New Zealand waters. NIWA Technical Report 10. 37 p.
- Hartill, B.; Armiger, H.; Tasker, R.; Middleton, C.; Fisher, D. (2004). Monitoring the length and age composition of recreational landings of kahawai in KAH 1 in 2000-01, 2001-02 and 2002-
 - 25

03. Final Research Report for Ministry of Fisheries Research Project KAH2000/01 Objective 1. 38 p. (Unpublished report held by MFish, Wellington)

- Hartill, B.; Blackwell, R.; Bradford, E. (1998). Estimation of mean fish weights from the recreational catch landed at boatramps in 1996. NIWA Technical Report 31. 40 p.
- Hartill, B.; Walsh, C. (2005). Characterisation of the kahawai fisheries of New Zealand and review of biological knowledge. Final Research Report for Ministry of Fisheries Research Project KAH2004/01 Objective 1. 160 p. (Unpublished report held by MFish, Wellington)
- Hurst, R.J.; Bagley, N.W. (1998). A summary of the biology and commercial landings, and a stock assessment of southern (SKI 3 and SKI 7) gemfish *Rexea solandri* (Gempylidae) in New Zealand waters. New Zealand Fisheries Assessment Research Document 98/3. 51 p.
- Stevens, D.W.; Kalish, J. M. (1998). Validated age and growth of kahawai (Arripis trutta) in the Bay of Plenty and Tasman Bay. NIWA Technical Report 11. 33 p.
- Sylvester, T. 1993: Recreational fisheries catch per unit effort trends in the North region (1990/91). Northern Fisheries Region Internal Report No. 14. 23 p. (Unpublished report held in Ministry of Fisheries, Auckland.)
- Sylvester, T. (1994). Recreational fisheries research in the North region. Seafood New Zealand February 1994: 27-28.
- Wood, B.A.; Bradstock, M.A.; James, G.D. (1990). Tagging of kahawai, Arripis trutta, in New Zealand, 1981-84. New Zealand Fisheries Technical Report 19. 16 p.

Appendix 1: Estimated proportions at length and c.v.s fof kahawal sampled from recreational fishers in East Northland, Haurald Gulf and the Bay of Plenty in 2003–04 and 2004–05 *Plue* reporting of fish in length data at the first data at the same

case i wi sittante, i i suit and o site and the bary of a really	III TACA-AA NIIA TAAA-AO
P.1. = proportion of fish in length class.	n = total number of fish sampled.
c.v. = coefficient of variation.	m.w.o.v. = mean weighted c.v.

Extimates of the proportion at length of kahawai from East Northland in 2003-04 and 2004-05

Length		2003-04		2004-05
(cm)	P.1.	C. V.	P.1.	C.V.
10	0.0000	0.00	0.0000	0.00
11	0.0000	0.00	0.0000	0.00
12	0.0000	0.00	0.0000	0.00
13	0.0000	0.00	0.0000	0.00
14	0.0000	0.00	0.0000	0.00
15	0.0000	0.00	0.0000	0.00
10	0.0000	0.00	0.0000	0.00
17	0.0000	0.00	0.0000	0.00
10	0.0000	0.00	0.0000	0.00
20	0.0010	1 00	0.0000	0.00
21	0.0000	0.00	0.0000	0.00
22	0.0000	0.00	0.0010	1.00
23	0.0000	0.00	0.0010	1.00
24	0.0000	0.00	0.0020	0.71
25	0.0030	0.58	0.0040	0.50
26	0.0020	0.71	0.0111	0.37
27	0.0049	0.52	0.0081	0.46
28	0.0069	0.51	0.0131	0.36
29	0.0059	0.46	0.0171	0.29
30	0.0049	0.49	0.0070	0.40
31	0.0039	0.46	0.0040	0.40
32	0.0128	0.29	0.0040	0.50
34	0.0286	0.27	0.0040	0.50
35	0.0365	0.29	0.0151	0.29
36	0.0424	0.23	0.0121	0.28
37	0.0286	0.22	0.0070	0.38
38	0.0217	0.35	0.0101	0.31
39	0.0177	0.24	0.0101	0.31
40	0.0167	0.28	0.0181	0.24
41	0.0207	0.22	0.0201	0.22
42	0.0296	0.20	0.0211	0.35
43	0.0286	0.21	0.0201	0.22
44	0.0433	0.17	0.0211	0.22
45	0.0424	0.16	0.0292	0.21
47	0.0384	0.16	0.0453	0.16
48	0.0591	0.14	0.0745	0.12
49	0.0798	0.11	0.0775	0.11
50	0.1025	0.11	0.0987	0.11
51	0.0611	0.13	0,0725	0.12
52	0.0532	0.14	0.0916	0.09
53	0.0414	0.16	0.0655	0.14
54	0.0374	0.17	0.0524	0.14
33	0.0305	0.17	0.0393	0.10
50	0.0128	0.23	0.0303	0.10
52	0.0039	035	0.0081	0.25
50	0.0020	0.70	0.0060	0.47
60	0.0020	0.70	0.0030	0.74
61	0.0000	0.00	0.0020	0.71
62	0.0000	0.00	0.0030	0.58
63	0.0010	1.00	0.0040	0.50
64	0.0000	0.00	0.0000	0.00
65	0.0010	1.00	0.0010	1.00
66	0.0000	0.00	0.0000	0.00
67	0.0000	0.00	0.0000	0.00
05 60	0.0000	0.00	0.000	0.00
70	0.0000	0.00	0.0000	0.00
	v.vvvv	4.00	0.0000	0.00
н	1 015		993	
M.W.C.P.		0.20		0.19

Appendix 1 continued:
Estimates of the proportion at length of kahawai from the Hauraki Gulf in 2003-04 and 2004-

Length	2	2003-04	Length		2004-05
(cm)	P.i.	C. V.	(cm)	Р.Ц	C. V.
10	0.0000	0.00	10	0.0000	0.00
11	0.0000	0.00	n	0.0000	0.00
12	0.0000	0.00	12	0.0000	0.00
13	0.0000	0.00	13	0.0000	0.00
14	0.0000	0.00	14	0.0000	0.00
15	0.0000	0.00	15	0.0000	0.00
16	0.0000	0.00	16	0.0000	0.00
17	0.0000	0.00	17	0.0000	0.00
18	0.0000	0.00	18	0.0000	0.00
20	0.0000	0.00	20	0.0000	0.00
20	0.0000	1.00	20	0.0000	1.00
22	0.0039	0.57	22	0.0066	0.61
23	0.0039	0.56	23	0.0149	0.45
24	0.0105	0.35	24	0.0099	0.47
25	0.0183	0.38	25	0.0248	0.28
26	0.0262	0.26	26	0.0199	0.36
27	0.0563	0.21	27	0.0149	0.33
28	0.0812	0.19	28	0.0132	0.36
29	0.04/1	0.25	29	0.0066	0.50
30	0.0340	0.19	30	0.0099	0.48
33	0.0400	0.19	32	0.0252	0.28
32	0.0557	0.16	33	0.0304	0.25
34	0.0812	0.14	34	0.0497	0.25
35	0.0772	0.14	35	0.0381	0.22
36	0.0929	0.15	36	0.0348	0.26
37	0.0733	0.21	37	0.0497	0.25
38	0.0524	0.18	38	0.0381	0.33
39	0.0209	0.29	39	0.0414	0.26
40	0.0275	0.27	40	0.0182	0.36
41	0.0170	0.34	41	0.0132	0.35
42	0.0118	0.33	42	0.0100	0.30
43	0.0131	0.37	45	0.0093	0.41
45	0.0065	0.45	45	0.0132	0.35
46	0.0052	0.50	46	0.0149	0.33
47	0.0079	0.41	47	0.0331	0.33
48	0.0092	0.38	48	0.0430	0.21
49	0.0026	0.71	49	0.0381	0.20
50	0.0052	0.50	50	0.0414	0.21
51	0.0065	0.45	51	0.0546	0.19
52	0.0065	0.45	52	0.0346	0.18
53	0.0118	0.54	53 54	0.0281	0.25
54	0.0059	0.36	55	0.0340	0.19
56	0.0013	1.00	56	0.0232	0.30
57	0.0013	1.00	57	0.0116	0.52
58	0.0000	0.00	58	0.0083	0.45
59	0.0013	1.00	59	0.0033	0.71
60	0.0000	0.00	60	0.0000	0.00
61	0.0000	0.00	61	0.0033	0.71
62	0.0000	0.00	62	0.0000	0.00
63	0.0000	0.00	03	0.0033	0.70
04 45	0.0000	0.00	64	0.0000	0.00
66	0.0000	0.00	66	0.0000	0.00
67	0.0000	0.00	67	0.0000	0.00
68	0.0000	0.00	68	0.0000	0.00
69	0.0000	0.00	69	0.0000	0.00
70	0.0000	0.00	70	0.0000	0.00
				10.1	
n	764			006	
m.w.c.v.		0.22			0.28

٠,

A Alter A
Appendix 1 - continues: Estimates of the proportion at length of kahawai from the Bay of Plenty in 2003-04 and 2004-04

Length		2003-04	Length		2004-05
(cm)	P.i.	C.V.	(cm) -	P.I.	C. V.
10	0.0000	0.00	10	0.0000	0.00
11	0.0000	0.00	11	0.0000	0.00
12	0.0000	0.00	12	0.0000	0.00
13	0.0000	0.00	13	0.0000	0.00
14	0.0000	0.00	14	0.0000	0.00
15	0.0000	0.00	15	0.0000	0.00
16	0.0000	0.00	16	0.0000	0.00
17	0.0000	0.00	17	0.0000	0.00
18	0.0000	0.00	18	0.0007	1.00
19	0.0000	0.00	19	0.0000	0.00
20	0.0000	0.00	20	0.0007	1.00
21	0.0000	0.00	21	0.0007	1.00
22	0.0000	0.00	22	0.0034	0.60
23	0.0000	0.00	23	0.0040	0.41
24	0.0000	0.00	24	0.0047	0.47
25	0.0010	1.00	25	0.0047	0.38
26	0.0030	0.74	26	0.0040	0.47
27	0.0040	0.78	27	0.0067	0.34
28	0.0040	0.60	28	0.0074	0.32
29	0.0020	0.70	29	0.0074	0.32
30	0.0030	0.57	30	0.0067	0.31
31	0.0020	0.70	31	0.0115	0.29
32	0.0070	0.55	32	0.0142	0.30
	0.0030	0.57	33	0.0101	0.27
34	0.0040	0.50	24	0.0209	0.19
30	0.0131	0.30	35	0.0276	0.16
30	0.0080	0.39	37	0.0230	0.19
37	0.0101	0.40	38	0.0175	0.22
20	0.0050	0.52	30	0.0783	0.22
J J	0.0040	0.37	40	0.0256	0.16
41	0.0070	0.26	41	0.0533	0.13
42	0.0201	0.27	42	0.0668	0 10
43	0.0181	0.24	43	0.0539	0.11
44	0.0271	0.20	44	0.0371	0.14
45	0.0492	0.18	45	0.0344	0.15
46	0.0623	0.15	46	0.0384	0.14
47	0.0724	0.13	47	0.0391	0.14
48	0.0945	0.11	48	0.0486	0.12
49	0.1317	0.09	49	0.0593	0.11
50	0.1236	0.09	50	0.0654	0.13
51	0.0975	0.10	51	0.0735	0.10
52	0.0754	0.12	52	0.0546	0.12
53	0.0422	0.17	53	0.0425	0.15
54	0.0382	0.16	54	0.0270	0.16
55	0.0201	0.22	55	0.0169	0.20
56	0.0111	0.33	56	0.0148	0.21
57	0.0040	0.49	57	0.0034	0.45
58	0.0080	0.39	58	0.0040	0.41
59	0.0040	0.50	59	0.0027	0.50
60	0.0000	0.00	00	0.0047	0.47
01	0.0010	0.99	01	0.0027	0.01
62	0.0010	1.00	62	0.0027	0.30
64	0.0000	0.00	64	0.0034	0.45
64	0.000	1.00	65	0.0013	1.00
66	0.0000	0.00	66	0.0007	0.00
67	0,0000	0.00	67	6,0000	0.00
68	0,0000	0.00	68	0.0007	1.00
69	0.0000	0.00	69	0.0000	0.00
70	0.0000	0.00	70	0.0007	1.00
			-		
n	995			1483	
M.W.C.V.		0.17			0.17

Appendix 2: Estimated proportions at age and c.v.s of kahawai sampled from recreational fishers in East Northland, Haurald Guif and the Bay of Plenty in 2003-04 and 2004-05. $P_j j_i =$ proportion of fish in age class. n = total number of fish sampled. c.v. = coefficient of variation. m.w.c.v. = mean weighted c.v.

Estimates of the proportion at age of kahawai from East Northland in 2003-04 and 2004-05.

Age		2003-04		2004-05
(years)	P.j.	C.V.	P.j.	C. V.
1	0.0010	1.00	0.0000	0.00
2	0.0418	0.18	0.0752	0.11
3	0.1766	0.09	0.0787	0.14
4	0.1838	0.09	0.1191	0.11
5	0.1026	0.13	0.1576	0.10
6	0.1290	0.11	0.1101	0.12
7	0.1214	0.12	0.1509	0.10
8	0.0711	0.16	0.0896	0.14
9	0.0628	0.17	0.0854	0.14
10	0.0472	0.20	0.0396	0.21
11	0.01 59	0.36	0.0263	0.25
12	0.0112	0.41	0.0123	0,38
13	0.0218	0.28	0.0108	0.41
14	0.0016	1.01	0.0102	0.42
15	0.0079	0.52	0.0105	0.48
16	0.0000	0.00	0.0051	0.58
17	0.0022	1.01	0.0035	0.71
18	0.0000	0.00	0.0000	0.00
19	0.0000	0.00	0.0000	0.00
>19	0.0000	0.00	0.0000	0.00
n	517		514	
m.w.c.v.		0.14		0.14

Estimates of the proportion at age of kahawai from the Hauraki Gulf in 2003-04 and 2004-05.

Age		200304		2004-05
(years)	P.j.	C.V.	P.j.	C.V.
1	0.0000	0.00	0.0000	0.00
2	0.3013	0.07	0.0730	0.16
3	0.4835	0.05	0.3894	0.05
4	0.1454	0.12	0.1049	0.17
5	0.0274	0.29	0.1044	0.16
6	0.0110	0.48	0.0538	0.25
7	0.0087	0.44	0.0412	0.30
8	0.0020	1.15	0.0621	0.24
9	0.0033	1.09	0.0289	0.47
10	0.0022	1.09	0.0203	0.45
11	0.0029	1.05	0.0259	0.39
12	0.0000	0.00	0.0389	0.36
13	0.0013	1.00	0.0265	0.38
14	0.0049	0.78	0.0051	0.77
15	0.0022	1.09	0.0033	1.03
16	0.0000	0.00	0.0000	0.00
17	0.0000	0.00	0.0042	1.01
18	0.0000	0.00	0.0084	0.62
19	0.0000	0.00	0.0000	0.00
>19	0.0000	0.00	0.0000	0.00
n	350		289	
MLW.C.V.		0.10		0.18

_ _ _ _ _ _

.

Appendix 2 - continued: Estimates of the proportion at age of kahawai from the Bay of Plenty in 2003–04 and 2004–05.

Age		2003-04		2004-05
(years)	P.j.	C.V.	P.j.	C.V.
1	0.0000	0.00	0.0000	0.00
2	0.0106	0.33	0.0332	0.18
3	0.0601	0.16	0.1660	0.08
4	0.0855	0.13	0.1877	0.10
5	0.0792	0.17	0.1542	0.12
6	0.1619	0.11	0.0813	0.17
7	0.1541	0.12	0.1115	0.14
8	0.1228	0.14	0.0474	0.24
9	0.0932	0.16	0.0827	0.18
10	0.0709	0.19	0.0393	0.25
11	0.0648	0.19	0.0181	0.34
12	0.0121	0.46	0.0165	0.50
13	0.0340	0.27	0.0189	0.41
14	0.0182	0.38	0.0055	0.63
15	0.0071	0.59	0.0088	0.59
16	0.0048	0.76	0.0025	1.01
17	0.0000	0.00	0.0056	0.82
18	0.0096	0.34	0.0107	0.56
19	0.0000	0.00	0.0000	0.00
>19	0.0042	0.81	0.0000	0.00
n	412		393	
m.w.c.v.		0.17		0.17

.

Appendix 3: Age-length keys derived from otolith samples collected from recreational fishers from East Northland in 2003–04 and 2004–05.

Estimates of proportion of length at age for kahawai sampled from the East Northland recreational fishery, January to April 2004. (Note: Aged to 01/01/04)

Length																			Age (vears)	No.
(cm)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	>19	aged
10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13	0	0	0	0	Ň	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ
16	ō	ō	ŏ	ò	Ó	Ó	0	0	0	Ó	0	0	0	Ó	Ó	Ō	Ō	ō	ō	ō	ō
17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19	1.00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20	1.00	ő	0	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	õ	õ	ő	0
22	ŏ	ŏ	ŏ	ŏ	ō	ō	ō	ō	ō	ŏ	ò	Ō	ō	ŏ	ŏ	ō	ō	ŏ	ŏ	ŏ	ŏ
23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
24	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ò	0
25	0	1.00	0	0	0	0	ő	ő	ő	ő	ő	ő	ő	0	0	0	0	0	0	0	2
27	ŏ	1.00	ŏ	ŏ	ŏ	ŏ	ŏ	Ő	Ō	ŏ	ō	ō	ō	ŏ	õ	ŏ	ŏ	ŏ	ŏ	ŏ	4
28	0	1.00	Ó	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ó	Ó	0	4
29	0	1.00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5
30	0	1.00		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
32	ő	0.20	0.80	ŏ	ŏ	ő	ő	ŏ	õ	ő	ŏ	ŏ	ő	ő	ő	ő	ő	ő	ő	0	5
33	ŏ	0.14	0.86	ō	ŏ	ō	ō	Ō	Ō	ō	ō	Ō	ō	Ó	Ō	Ō	ŏ	ŏ	ŏ	ŏ	7
34	0	0.15	0.46	0.38	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	13
35	0	0.13	0.80	0.07	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	15
36	0	0	0.89	0.11	015	0	0	0	0	0	0	0	Ň	0	0	0	0	0	0	0	18
38	0	ŏ	0.67	0.33	0.15	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ő	ŏ	ŏ	ŏ	3
39	ŏ	ŏ	0.60	0.40	ō	ō	Ō	ò	Ó	Ō	Ó	Ó	0	Ő	Ó	Ō	Ō	ō	ō	ō	10
40	0	0	0.13	0.75	0	0.13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8
41	0	0	0.25	0.56	0.06	0.06	0	0.06	0	0	0	0	0	0	0	0	0	0	0	0	16
42	0	0	0.12	0.53	0.18	0.06	0	ň	0	0	ő	0	0	0	0	0	0	0	Ň	0	12
44	ŏ	ŏ	0.04	0.65	0.23	0.08	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	26
45	0	0	0.11	0.33	0.28	0.11	0.11	0.06	0	0	0	0	0	0	0	0	0	0	0	0	18
46	0	0	0.08	0.38	0.29	0.13	0.04	0.04	0	0.04	0 0	0	0	0	0	0	0	0	0	0	24
47	0	0	0.09	0.26	0.17	0.17	0.22	0.04	0 03	0	0	0	0.04	0	0	0	0	0	0	0	23
48 40	ő	0	ő	0.20	0.14	0.27	0.23	0.06	0.16	0.04	0.02	0.02	0.02	0.02	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	50
50	ō	ŏ	ŏ	0.02	0.13	0.22	0.30	0.15	0.04	0.07	0.04	0	0.02	0	0	Ō	Ó	ō	Ō	ō	46
51	0	0	0	0	0.07	0.14	0.29	0.11	0.11	0.14	0.04	0.04	0.07	0	0	0	0	0	0	0	28
52	0	0	0	0	0.04	0.21	0.13	0.17	0.21	0.13		0.04	0	0	0.04	0	0.04	0	0	0	24
53	0	0	0	0	0.12	0.24	0.12	0.10	0.06	0.10	0.04	0.05	0.04	0	ő	ŏ	0	0	0	ő	19
55	ŏ	ŏ	ŏ	ŏ	ŏ	0.17	0.13	0.04	0.30	0.13	0.05	0.04	0.13	ŏ	0.04	ŏ	ŏ	ŏ	ŏ	ŏ	23
56	Ó	Ō	ō	0	0	0	0.13	0.13	0.25	0.13	0.13	0	0.13	0	0.13	0	0	0	0	0	8
57	0	0	0	0	0	0	0	0.25	0.25	0	0.25	0	0	0	0.25	0	0	0	0	0	4
58	0	0	0	0	0	0	0	0.33	0	0.67	0	0	1 00	0	0	0	0	0	0	0	3
59 60	0	0	0	0	ő	0	ő	ő	ŏ	ő	ŏ	ŏ	1.00	0	ŏ	ŏ	ő	ő	ŏ	ő	1
61	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ō	ō	ō	ō	ō	ō	0	ō	ō	ō	ō	ŏ	ŏ	ŏ	ò
62	0	Ó	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
63	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
64	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0
03 66	o o	0	ő	ŏ	ŏ	ŏ	ő	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ
67	ŏ	ō	ő	Ő	Ó	Ó	0	Ó	0	0	Ó	Ó	Ó	Ó	0	Ó	Ó	Ō	Ō	Ō	Ō
68	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ó
69 70	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
/0	0	0	0	U	0	0	0	v	U	U	U	U	U	0	0	U	U	U	U	U	U
Total																					517

32

. .

-

.

~--

- -

Appendix 3 continued:

Total

Estimates of proportion of length at age for kahawai sampled from the East Northland recreational fishery, January to April 2005. (Note: Aged to 01/01/05)

Length																			Age ((ears)	No.
(cm)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	>19	aged
	•	•		~	•	~	~	~	^	~	•	~	~	•	•	~	•	~	•	~	
10	0	0	U	0	Ň	0	0	0	, v	0	0	v v	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	Q	0	0	0	0	0	0	0	0	0	U	Q	0	0	0
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
23	ŏ	ō	0	Ö	0	Ó	0	Ó	0	0	0	0	Ó	Ó	Ó	Ó	0	Ó	Ó	0	ō
24	Ō	1.00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
25	õ	1.00	ō	ō	Ó	Ō	Ó	0	Ó	Ó	Ó	Ó	ō	ò	ò	ō	Ō	0	Ō	ō	3
26	ň	100	ō	ō	ō	ō	ò	õ	ò	ō	ō	ō	ā	õ	ō	ŏ	ō	ŏ	ō	ŏ	6
20	ň	1.00	ŏ	ň	ŏ	ŏ	ō	ō	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ň	ŏ	ň	ň	ŏ	4
21	ň	1.00	ň	ň	ŏ	ŏ	ŏ	ň	ň	ň	õ	ň	ŏ	ŏ	ň	ň	ň	ň	ŏ	ň	7
20	Ň	1.00	ň	ň	ŏ	ŏ	ň	ň	ň	ň	ŏ	ň	ň	ň	ŏ	ň	ň	ň	ň	ň	ś
29	Ň	0.67	0 22	ň	ŏ	ŏ	ň	ň	ň	ň	ŏ	ň	ň	ň	ŏ	ň	ň	ň	ň	ň	2
30	Ň	1.00	0.55	ŏ	ň	Ň	ň	ň	ň	ŏ	ň	ň	ŏ	ň	ň	ŏ	Ň	ň	ŏ	ň	1
31	0	0.60	0.60	Ň	Ň	Ň	0	ŏ	ŏ	2	ň	Ň	ň	ŏ	ŏ	ŏ	Ň	Ň	ñ	ň	2
32	~	0.50	1.00	ň	ň	ň	ň	ň	ň	ŏ	ŏ	ň	ŏ	0	ň	ň	ň	ň	ŏ	ň	2
33	~	Ň	1.00	Ň	Ň	Ň	Ň	ŏ	ň	ň	ŏ	ŏ	ň	Ň	0	Ň	Ň	Ň	ŏ	Ň	2
34	0		1.00	Š	Ň	Š	~	~		Ň	Ň	Ň	Ň	Ň	Ň	ŏ	Ň	~	š	~	2
35	0	0	1.00	Ň	~	Ň	Ň		~	~	Š	ŏ	Ň	Š	Ň	Ň	Ň	~	0		
36	0	0	1.00	~~~	0	Ň	Ň	Ň	0	0	Ň		0	0	Ň	Ň	0	Ň	Ň	Ň	2
37	0	0	0.50	0.50	0	0	0	0	Ň	0	0	0				Š.	0	v v	Ň	0	4
38	0	0	0.00	0.40	v v		Ň	Ň			Ň	~	Ň	Ň	Ň			Ň	Ň	Ň	2
39	0	0	0.67	0.33	0	0	0	0	Ň	0			0	0	0	0	0	0		0	y
40	0	0	0.33	0.67	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	U	
41	0	0	0.08	0.77	0.15	0	0	0	0	0	0	0	0	0	0	0	U	U	0	0	13
42	0	0	0.40	0.60	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5
43	0	0	0.33	0.11	0.56	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9
44	0	0	0	0.62	0.23	0.08	0.08	0	0	0	0	0	0	0	0	0	0	0	0	0	13
45	0	0	0	0.44	0.28	0.11	0	0.11	0.06	0	0	0	0	0	0	0	0	0	0	0	18
46	0	0	0	0.26	0.16	0.32	0.11	0.11	0.05	0	0	0	0	0	0	0	0	0	0	0	19
47	0	0	0	0.22	0.37	0.07	0.22	0.04	0	0.07	0	0	0	0	0	0	0	0	0	0	27
48	0	0	0	0.14	0.36	0.11	0.22	0.11	0.03	0.03	0	0	0	0	0	0	0	0	0	0	36
49	0	0	0	0.11	0.33	0.18	0.13	0.09	0.11	0.02	0.02	0	0	0	0	0	0	0	0	0	45
50	0	0	0	0	0.27	0.13	0.25	0.17	0.13	0.02	0	0.02	0	0.02	0	0	0	0	0	0	48
51	0	0	0	0.03	0.14	0.26	0.20	0.14	0.20	0	0	0	0	0	0.03	0	0	0	0	0	35
52	0	0	0	0	0.09	0.20	0.20	0.11	0.20	0.09	0.04	0.02	0	0.04	0	0	Ó	0	0	0	45
53	0	0	0	0	0.11	0.14	0.38	0,11	0.11	0	0.03	0.05	0.03	0	0	0	0.05	0	0	0	37
54	0	0	0	0	0.03	0.14	0.14	0.07	0.14	0.14	0.10	0.03	0.10	0	0.03	0.07	0	0	0	0	29
55	0	0	0	0	0	0.05	0.21	0.32	0.05	0.16	0.11	0	0.05	0	0.05	0	0	0	0	0	19
56	0	0	0	0	0.04	0.04	0.16	0.16	0.04	0.16	0.24	0.04	0.04	0	0.04	0.04	0	0	0	0	25
57	0	0	0	0	0	0	0.33	0	0.11	0.22	0	0.11	0	0.22	0	0	0	0	0	0	9
58	Ó	0	0	0	0	0.17	0.17	0	0.50	0	0	0	0	0.17	0	0	Ó	0	0	0	6
59	Ō	0	0	0	0	0	0	0	0.50	0	0	0	Ó	0	0.50	ō	Ō	Ó	ō	Ó	ž
60	ō	0	Ó	0	0	0	0	0	0	0	Ó	0	Ō	Ō	0	ō	ō	ō	ŏ	ŏ	<u>.</u>
61	ō	ō	ō	0	Ó	Ó	0	o	0	0	Ó	Ó	ŏ	ō	ŏ	ŏ	ŏ	Ň	ň	ň	ň
62	õ	õ	ŏ	õ	õ	ŏ	ō	õ	õ	õ	õ	ō	ň	ň	ň	ŏ	ň	ň	ň	ŏ	ň
63	ŏ	ň	ŏ	ő	ő	ő	ő	ő	ő	õ	ő	ő	ő	ň	ň	ő	ŏ	õ	ň	õ	~
64	ň	័	ň	ň	ŏ	ŏ	ň	ň	ň	ŏ	ň	ň	ň	ő	ň	ň	n	ň	ň	Ň	Ň
65	ň	~	ň	ň	ň	ň	ŏ	ň	ň	ň	ň	ň	ň	Ň	Ň	Ň	Å	Ň	0	Ň	0
66	۰ ۵	័	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	0	ň	~	0	č	0	ů Č	Ň	0
67	ő	~ Ň	~	ň	ň	័	ň	0	ň	ň	ň	ň	~	~	~	0	0	~	0	0	0
69	Š	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ň	۰ ۱	۰ ۱	2	0	n N	ň	ň	- U	~	0	~	~	0	0	~	0	~	0
60	~	~	~	Ň	ň	ň		ň	Ň	Ň		0	0	0	~	0	~	~	0	0	Ň
70	~	~	~	~	~	~	~ ~	~	~	~	~	~	~	0	0	0	v	v	0	0	0
10	0	U	U	v	U	U	v	U	v	U	U	v	v	U	U	U	U	U	0	U	0

33

Appendix 4: Age-length keys derived from otolith samples collected from recreational fishers from the Hauraki Gulf in 2003-04 and 2004-05.

Length																-			Age (y	rears)	No.
(cm)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	>19	aged
10	0	n	0	٥	0	٥	0	0	0	٥	٥	0	n	0	0	0	0	0	0	0	0
11	ŏ	ň	ő	õ	ŏ	ŏ	ŏ	ŏ	ŏ	ň	ő	ŏ	ŏ	ŏ	ŏ	ň	ő	ň	ŏ	ŏ	ŏ
12	ŏ	ŏ	ŏ	õ	ŏ	ō	ō	ō	ō	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ
13	Ō	Ō	Ō	Ō	Ó	0	0	0	0	Ó	0	Ó	Ó	0	0	Ō	Ó	Ó	Ó	Ó	Ō
14	Ō	0	0	Ó	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20	0	0	0	0	0	Ň	~	Ň	Ň	~	0	0	0	Ň	0	0	0	~	ő	0	0
21	0	100	0	ň	ŏ	ő	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ň	ő	ŏ	ñ	ň	ň	ŏ	ŏ	ž
22	ő	1.00	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ĩ
24	ŏ	1.00	ō	ō	Ō	Ó	Ó	Ó	Ō	ò	Ó	ŏ	Ō	ō	Ō	ō	ō	ō	ō	ō	6
25	Ó	1.00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6
26	0	1.00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9
27	0	0.84	0.16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	19
28	0	0.79	0.21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	29
29	0	0.69	0.31	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	16
30	0	0.50	0.50	0	0	0	0	Ň	Ň	0	0	Ň	0	0	ő	ő	0	0	0	Ň	15
31	0	0.27	0.75	010	ő	õ	ŏ	ŏ	ŏ	ő	õ	ŏ	ő	ŏ	õ	ŏ	ŏ	ň	ő	ŏ	21
33	õ	0.24	0.72	0.04	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	25
34	ŏ	0.19	0.77	0.03	ŏ	ō	ō	Ó	Ó	ŏ	õ	ŏ	õ	ŏ	Ō	ŏ	õ	ŏ	ŏ	ŏ	31
35	0	0.14	0.77	0.09	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	22
36	0	0.21	0.74	0.06	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	34
37	0	0	0.67	0.33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	15
38	0	0	0.82	0.18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	17
39	0	0	0.17	0.83	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. 6
40	. 0	0	0.33	0.67	0.25	ň	0	0	0	0	Å	0	ň	0	0	0	0	0	0	Ň	12
41	ň	ŏ	017	0.03	0.25	ŏ	ŏ	ŏ	ŏ	ő	ŏ	ŏ	ő	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	6
43	ŏ	ŏ	0.40	0.60	ŏ	Ő	ō	ō	Ō	ŏ	ŏ	ŏ	õ	ŏ	ŏ	ŏ	ŏ	õ	ŏ	õ	Š
44	ō	ō	0	0.57	0.43	Ó	0	Ó	0	Ó	Ó	Ó	Ó	0	Ó	Ó	Ó	Ó	Ó	Ó	7
45	0	0	0	1.00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
46	0	0	0	0.67	0.33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
47	0	0	0	0.33	0.67	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
48	0	0	0	0.50	0	0.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
49	0	0	0	0	0	0.50	0.50	0	0	0	0	0	0	0	0	0	0	0	0	0	2
50	0	~		0	0.67	0 22	1.00	ň	Ň	0	٥ ٥	0	Ň	۰ ۵	0	0	0	0	0	~	2
51	0	Ň	ň	ň	0.07	0.00	ŏ	ŏ	0.50	ŏ	ŏ	ŏ	ŏ	ŏ	ň	ŏ	õ	ŏ	ŏ	ŏ	2
53	ŏ	ŏ	ŏ	ŏ	0.25	0.25	ŏ	ŏ	Ō	ŏ	0.25	ŏ	ŏ	0.25	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	4
54	ō	Ō	Ó	Ō	0	0	0	0.50	0	0	0	0	0	0.50	0	0	0	0	0	0	2
55	0	0	0	0	0	0	0.33	0	0	0.33	0	0	0	0	0.33	0	0	0	0	0	3
56	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
57	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
58	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
59	0	0	0	0	0	0	0	0	0	0	Ň	Ň	1.00	Ň	0	0	0	0	0	0	1
60	0	0	0	0	0	ŏ	õ	0	ŏ	0	ő	õ	ŏ	ő	ŏ	ň	0	0	ŏ	0	ő
62	0	ň	ň	ň	ñ	õ	ŏ	ŏ	ŏ	õ	ŏ	ŏ	ŏ	Ő	õ	ŏ	ŏ	ŏ	ŏ	ŏ	ő
63	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ő	Ő	Ő	ō	ō	õ	ő	ő	ō	ō	ō	ō	ō	ō	ō
64	õ	Ő	Ő	Ó	Ó	0	0	0	0	0	0	0	0	Ó	0	0	0	0	0	0	0
65	Ō	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
66	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
67	0	0	0	0	0	0	0	Ő	0	0	0	0	0	0	0	0	0	0	0	0	0
68	0	0	õ	0	0	0	0	0	0	0	0	0	0	0	0	U C	0	0	0	0	0
69	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
/0	0	0	v	v	0	U	0	0		v	0	0	0	U	v	v	v	v	v	v	0

Estimates of proportion of length at age for kahawai sampled from the Hauraki Gulf recreational fishery, January to April 2004 (Note: Aged to 01/01/04)

34

Total

• ••

.

Appendix 4 - continued:

Estimates of proportion of length at age for kabawai sampled from the Hauraki Gulf recreational fishery, January to April 2005 (Note: Aged to 01/01/05)

Length																			Age (y	cars)	No.
(cm)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	>19	aged
10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	Ő	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ
17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19	0	0	0	ő	ŏ	ŏ	ő	ŏ	ŏ	ŏ	ŏ	ő	ŏ	ŏ	ő	ŏ	ŏ	ő	ŏ	ŏ	ŏ
21	ō	1.00	Ō	Ó	Ó	0	0	0	0	0	0	Ó	0	0	0	0	0	Ó	0	0	2
22	0	1.00	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
23	0	0.83	017	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ő	0	6
25	ŏ	0.70	0.30	ŏ	ŏ	ō	ō	ō	ō	Ő	ō	ō	ŏ	ō	ō	ō	ō	ō	ō	ŏ	10
26	0	0.50	0.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10
27	0	0.25	0.75	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
28 29	0	0.38	0.67	0	ŏ	ő	ŏ	ŏ	0	ő	Ő	Ő	ő	ŏ	ŏ	ŏ	ő	ŏ	ŏ	ŏ	6
30	ō	0	0.80	0,20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5
31	0	0.14	0.71	0.14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7
32 33	0	0	0.94	0.06	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ŏ	0	10
34	ŏ	ŏ	0.82	0.18	0	ō	0	Ō	ō	Ó	Ó	Ō	Ó	ō	Ō	0	Ō	ō	ō	Õ	17
35	0	0	1.00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10
36	0	0	1.00	020	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10
38	ŏ	ŏ	0.83	0.17	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	6
39	0	0	1.00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5
40	0	0	0.75	0	0.25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
41	0	ő	0.20	0.40	0.20	0.20	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	5
43	ō	ō	0	0.75	0.25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
44	0	0	0	1.00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6
45 46	0	0	0	0.67	0.20	0.20	0	0	0	0	0	0	0	0	0	0	0	0	ő	0	5
47	ŏ	ŏ	ŏ	0.40	0.40	0	0.10	ō	0.10	ō	ō	ō	ō	ō	ō	ō	ŏ	ŏ	ŏ	ŏ	10
48	0	0	0	0.17	0.42	0.25	0	0.08	0	0.08	0	0	0	0	0	0	0	0	0	0	12
49 50	0	0	0	0.08	0.31	0.31	0	0.15	0.08	0	0.08	0	0	0	0	0	0	0	0	0	13
51	ŏ	ŏ	ŏ	ŏ	0.18	0.18	0.27	0.09	ŏ	0.09	0.18	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ii
52	0	0	0	0	0	0	0	0.38	0.08	0.15	0.15	0	0.15	0	0	0	0.08	0	0	0	13
53	0	0	0	0	0	0.14	0.14	0.29	0.14	0	0	0.14	0.14	0	0	0	0	0	0	0	7
54 55	0	0	0	ŏ	ŏ	0.14	0.29	0.14	0.33	ŏ	ŏ	0.67	0.21	ŏ	ŏ	ŏ	ő	ŏ	ŏ	Ő	3
56	Ó	ō	Ó	0	0	0.14	0.14	0.14	0	0.14	0	0.14	0	0	0.14	0	0	0.14	Ó	Ō	7
57	0	0	0	0	0	0	0	0	0 0	0	0.40	0	0.20	0.20	0	0	0	0.20	0	0	5
28 59	0	0	ő	0	ŏ	ŏ	ŏ	ő	ő	ő	ő	0.33	ă	0.33	ő	0	0	0.33	0	0	3
60	ŏ	ŏ	ŏ	ŏ	ō	ŏ	ō	ŏ	ŏ	Ō	ō	Ō	ō	ō	ō	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ
61	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
62 63	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
64	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ő	ŏ	ŏ	ŏ	ŏ
65	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ó	Ō	ō	ō	ō
66 67	0	0	0	0	0	0	0	0	0	0	0	õ	0	0	0	0	0	0	0	0	0
68	0	0	0	0	ő	ŏ	ŏ	ŏ	ő	ŏ	ŏ	ő	ő	0	ő	ő	0	0	0	0	0
69	Ő	ŏ	ō	ŏ	ō	Ō	Ō	ō	ō	ō	Ó	ō	õ	ō	Ő	Ő	ŏ	ŏ	ŏ	ŏ	ŏ
70	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ö
Total																					289

Appendix 5: Age-length keys derived from otolith samples collected from recreational fishers from the Bay of Plenty in 2003-04 and 2004-05.

Estimates of proportion of length at age for kahawal sampled from the Bay of Plenty recreational fishery, January to April 2004 (Note: Aged to 01/01/04)

Length								_			_								Age (j	ears)	No.
(cm)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	>19	aged
10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13	0	0	0	ů ů	ő	0	0	õ	ő	ň	0	ő	0	ő	õ	ő	õ	õ	ň	ő	0
14	0	ő	õ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ
16	ŏ	ŏ	ŏ	ō	ō	Ō	Ō	0	0	0	Ó	Ó	Ō	Ó	Ó	Ó	ō	ò	Ó	Ō	ō
17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20	0	ő	0	ő	õ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	0	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	0
22	ŏ	ŏ	ŏ	ŏ	ŏ	ō	ŏ	ŏ	ō	Ō	ō	ō	ō	ō	ō	Ō	ŏ	ŏ	ŏ	ŏ	ŏ
23	Ō	Ó	Ō	0	Ó	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
25	0	1.00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
20	ů ů	100	0	0	0	ő	0	õ	ŏ	ŏ	ő	ŏ	õ	õ	ŏ	ŏ	ŏ	ő	ő	ő	1
28	ŏ	1.00	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	i
29	ŏ	0	õ	ō	Ō	Ō	Ō	Ó	0	0	0	0	0	0	0	0	Ō	Ó	Ó	Ó	ō
30	0	0.50	0.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
31	0	0	1.00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
32	0	0	1.00	0	0	0	0	0	0	0	0	0	0	o o	ő	0	0	0	0	0	1
33	0	ő	1.00	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	2
35	ŏ	ŏ	0.88	0.13	ŏ	ŏ	ŏ	ŏ	ō	ō	ō	ō	ō	ō	ō	ō	ō	ō	ō	ō	8
36	0	0	0.57	0.43	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7
37	0	0	0.67	0	0	0.33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
38	0	0	0	0.60	0.40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5
39	0	0	0	1.00	0.33	0.33	ŏ	ŏ	ŏ	õ	ő	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ă	0	4
41	ŏ	ŏ	0.14	0.79	0.07	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	õ	ō	õ	ŏ	ŏ	ŏ	14
42	Ō	Ó	0	0.77	0.15	0	0	0	0.08	0	0	0	0	0	0	0	0	0	0	0	13
43	0	0	0.20	0.30	0.30	0	0.20	0	0	0	0	0	0	0	0	0	0	0	0	0	10
44	0	0	0	0.47	0.16	0.26	0.11	0	0	0	0	0	0	0	0	0	0	0	0	0	19
45	0	0	0.28	0.17	0.11	0.55	0.00	0.00	0.05	ŏ	ő	õ	ő	õ	ŏ	ŏ	ñ	ŏ	ŏ	ŏ	22
40	ŏ	ŏ	ŏ	0.07	0.14	0.29	0.29	0.18	Ő	ŏ	0.04	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	28
48	ŏ	Ō	ō	0	0.13	0.29	0.26	0.10	0.06	0.06	0.06	0	0.03	0	0	0	0	0	0	0	31
49	0	0	0	0	0.07	0.21	0.21	0.19	0.14	0.09	0.07	0.02	0	0	0	0	0	0	0	0	43
50	0	0	0	0	0.02	0.12	0.24	0.25	0.20	0.10	0.04	0	0.04	0	0	0	0 0	0	0	0	51
51	0	0	0	0	0.05	0.10	0.17	0.17	0.17	0.17	0.12	0.02	0.08	0.02	0.02	ň	ő	0	0	0	42
52	0	0	0	ŏ	0.12	0.07	0.08	0.17	0.17	0.17	0.04	0.08	0.17	0.08	0.04	ŏ	ŏ	ŏ	ŏ	ő	24
54	ŏ	ō	ō	ŏ	ō	Ō	0	0.17	0.08	0.08	0.17	0.08	0.08	0.17	0.00	0.08	0	0	0	0.08	12
55	0	0	0	0	0	0	0	0.17	0	0.17	0.33	0	0.33	0	0	0	0	0	0	0	6
56	0	0	0	0	0	0	0	0	0.14	0.14	0.14	0	0.29	0	0	0.14	0	0.14	0	0	7
57	0	0	0	0	0	0	0	0	0	0	1 00	0	0	Ň	0	0	0	1.00	0	0	1
58 50	0	0	0	0	ŏ	ŏ	ŏ	ă	ŏ	ŏ	1.00	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	1.00	ŏ	ŏ	i
60	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ō	ō	ō	ŏ	ō	ō	ō	ō	Ō	Ō	ō	0	ō	ō	ō
61	Ó	0	Ó	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1.00	1
62	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
63	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04 65	0	0	0	0	0	0	0	0	0	ő	ő	ő	ő	ő	ŏ	ŏ	ŏ	ő	ő	ŏ	ő
66	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ő	ŏ	ő	ŏ
67	ō	ō	ō	Ō	Ō	Ó	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
68	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
69	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	U	0	0	U	v	v	v	0	U	v	0	J	v	U	v	J	0
Total																					412

36

_ ...

.

Appendix 5 ~ continued:

,

Estimates of proportion of length at age for kahawai sampled from the Bay of Plenty recreational fishery, January to April 2005 (Note: Aged to 01/01/05)